INDIGO Home University of Illinois at Urbana-Champaign logo uic building uic pavilion uic student center

Threshold-Switchable Particles to Treat Internal Hemorrhage

Show full item record

Bookmark or cite this item:

Files in this item

File Description Format
PDF DONOVAN-DISSERTATION-2017.pdf (18MB) Restricted Access (no description provided) PDF
Title: Threshold-Switchable Particles to Treat Internal Hemorrhage
Author(s): Donovan, Alexander J
Advisor(s): Liu, Ying
Contributor(s): Sharma, Vivek; Berry, Vikas; Du, Xiaoping; Perez-Salas, Ursula; Liu, Ying
Department / Program: Chemical Engineering
Degree Granting Institution: University of Illinois at Chicago
Degree: PhD, Doctor of Philosophy
Genre: Doctoral
Subject(s): Inorganic polyphosphate (polyP) Dynamic light scattering (DLS) Transmission electron microscopy (TEM) Phospholipase C (PLC)
Abstract: An artificial platelet nanotechnology with threshold-switchable procoagulant functionality is devised, employing one of the human body’s intrinsic hemostatic agents, inorganic polyphosphate (polyP). Inspired by the manner in which the anionic polyelectrolyte is stored in human platelets and how it exerts its hemostatic effects, polyP is nanoprecipitated in aqueous, polyvalent metal salt solutions. The particle formation is characterized by dynamic light scattering (DLS), and the particle morphology, structure, and elemental composition is determined by transmission electron microscopy (TEM) and energy-dispersive X-Ray spectroscopy (EDS). The ability for the polyP nanoparticles (NPs) to initiate blood coagulation in human plasma is accomplished by a standard turbidometric experiment assaying for contact pathway activation, validating that polyP NPs manifest robust procoagulant ability compared against the molecularly dissolved polymers of the same molecular weight. PolyP granules are stored in lipid bilayer shells approximately 250 nm across. These core-shell granular nanoparticles are referred to as dense granules in human platelets because of the presence of high molecular weight elements and their appearance under an electron microscope. A route to achieve a similar nanostructure is realized by brief ultrasonication of granular polyP NPs with sterically stabilized liposomes to give an Artificial Dense Granule (ADG). DLS was utilized to qualify colloidal stability and polyP encapsulation efficiency. High resolution imaging and two-dimensional spectroscopy are employed to verify the ADG core-shell structure and elemental distribution. A central design element of ADGs is to rapidly release the polyP cargo in the presence of high concentrations of phospholipase enzymes typically overexpressed in the blood stream adjacent to hemorrhagic bleeding sites. As a proof of concept, it is demonstrated that ADGs may initiate the contact pathway of blood coagulation in isolated protein assays and in human plasma only at above-threshold enzyme concentrations. In addition to its hemostatic functionality, polyP also serves as a generic molecular chaperone. Leveraging polyP’s role as a protein binder, polyP nanoprecipitation is further investigated for its ability to assist as a protein delivery vehicle using human factor VIII (FVIII) as a model protein. FVIII and polyP were co- nanoprecipitated in aqueous calcium and encapsulated in sterically stabilized liposomes. The ADG-FVIII NPs were subsequently assayed for their ability to clot FVIII-deficient plasma, a simplified model for Hemophilia A. However, further work is necessary to confirm the resulting particle’s morphology and the protein distribution. Although the groundwork has been created for a threshold-switchable procoagulant nanoparticle, additional ADG iterations must be created that are more structurally stable and more closely mimic actual human platelets. Further, these novel prototypes must be more rigorously tested in in vitro models of blood clotting to include the tissue factor and common pathways of coagulation and in in vivo models of hemorrhagic bleeding. A set of synthetic and experimental strategies will be presented in order to arrive at a bona fide, threshold-switchable nanoparticle hemostat.
Issue Date: 2017-07-27
Type: Thesis
Date Available in INDIGO: 2017-10-31
Date Deposited: August 201

This item appears in the following Collection(s)

Show full item record


Country Code Views
United States of America 25
China 14
Ukraine 11
Russian Federation 6
Switzerland 3


My Account


Access Key