INDIGO Home University of Illinois at Urbana-Champaign logo uic building uic pavilion uic student center

Pantograph/Catenary Contact Formulations

Show full item record

Bookmark or cite this item: http://hdl.handle.net/10027/21691

Files in this item

File Description Format
PDF Pantograph_Catenary_Paper.pdf (1MB) Restricted to UIC (no description provided) PDF
Title: Pantograph/Catenary Contact Formulations
Author(s): Kulkarni, S.; Pappalardo, C.M.; Shabana, A.A.
Subject(s): Contact Formulations Pantograph Catenary
Abstract: In this investigation, the pantograph/catenary contact is examined using two different formulations. The first is an elastic contact formulation that allows for the catenary/panhead separation and for the analysis of the effect of the aerodynamic forces, while the second approach is based on a constraint formulation that does not allow for such a separation by eliminating the freedom of relative translation in two directions at the catenary/panhead contact point. In this study, the catenary system, including the contact and messenger wires, is modeled using the nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF) and flexible multibody system (MBS) algorithms. The generalized aerodynamic forces associated with the ANCF position and gradient coordinates and the pantograph reference coordinates are formulated. The new elastic contact formulation used in this investigation is derived from the constraint-based sliding joint formulation previously proposed by the authors. By using a unilateral penalty force approach, separation of the catenary and panhead is permitted, thereby allowing for better evaluating the response of the pantograph/catenary system to wind loading. In this elastic contact approach, the panhead is assumed to have six degrees-of-freedom with respect to the catenary. The coordinate system at the pantograph/catenary contact point is chosen such that the contact model developed in this study can be used with both the fully parameterized and gradient deficient ANCF elements. In order to develop a more realistic model, the MBS pantograph model is mounted on a detailed three-dimensional MBS rail-vehicle model. The wheel/rail contact is modeled using a nonlinear three-dimensional elastic contact formulation that accounts for the creep forces and spin moment. In order to examine the effect of the external aerodynamic forces on the pantograph/catenary interaction, two scenarios are considered in this investigation. In the first scenario, the crosswind loading is applied on the pantograph components only, while in the second scenario, the aerodynamic forces are applied on the pantograph components and also on the flexible catenary. For the configuration considered in this investigation, it was found that the crosswind assists the uplift force exerted on the pantograph mechanism, increasing the mean contact force value. Numerical results are presented in order to compare between the cases with and without the wind forces.
Issue Date: 2016-04
Publisher: American Society of Mechanical Engineers
Citation Info: Kulkarni, Shubhankar, Carmine M. Pappalardo, and Ahmed A. Shabana. "Pantograph/catenary contact formulations." Journal of Vibration and Acoustics 139.1 (2017): 011010. DOI: 10.1115/1.4035132.
Type: Article
Description: This is a copy of an article published in the Journal of Vibration and Acoustics . © 2016 American Society of Mechanical Engineers
URI: http://hdl.handle.net/10027/21691
ISSN: 1048-9002
Date Available in INDIGO: 2017-06-26
 

This item appears in the following Collection(s)

Show full item record

Statistics

Country Code Views
United States of America 35
China 32
Ukraine 12
Russian Federation 8
Germany 2

Browse

My Account

Information

Access Key