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SUMMARY  

Pnictide semiconductor nanoparticles and quantum dots are an important class of materials 

due to their potential applications in solar cell, thermoelectricity, bioimaging and biosensors. 

However, scientific communitiesô attention on pnictide materials was negligible compared to 

conventional II-VI chalcogenide based QDs. This is primarily due to the challenging syntheses of 

group V semiconductor nanoparticles compared to II-VI families. This thesis focuses on the 

development of safe and effective methods for the synthesis of a wide variety of pnictide 

semiconductor nanoparticles, or quantum dots including materials within the III-V, II -V, I-V-VI2 

and I3-V-VI4 families. In first chapter, I have reported a relatively air-safe and less hazardous 

arsenic precursor, bis-[N,N-bis-(trimethylsilyl)amido] chloroarsenic, [(Me3Si)2N]2AsCl (arsenic 

silylamide) that can be used to create a variety of crystalline, monodisperse II-V, III -V, and I3-V-

VI4 family semiconductor quantum dots. The mechanism of the formation of quantum dots was 

also elaborated with the help of DFT calculation and NMR experiments. Next, I have expanded 

the scope of these silylamide-associated pnictide precursors, tris[N,N-

bis(trimethylsilyl)amido]antimony, [(Me3Si)2N]3Sb and tris[N,N-

bis(trimethylsilyl)amido]bismuth, [(Me3Si)2N]3Bi towards the exploration of novel antimony and 

bismuth nanomaterials, AgSbSe2 and AgBiSe2. Furthermore, electrical measurements of these 

materials were performed to characterize the electrical properties of the nanoparticles. In addition 

to pnictide nanomaterialsô syntheses, I have developed a series of hydrophilic phosphonic acids to 

solubilize QDs in aqueous solution using a variety of strategies.   This project focuses to minimize 

the number of steps for water solubilization and enhance the efficacy of functionalization of QDs. 
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1 Introduction  

1.1 INTRODUCTION  

 Nanotechnology is defined as ñthe design, characterization, production and application of 

structures, devices and systems by controlling shape and size at the nanometer scale.ò1 The unique 

aspects of this subject are based on the study of nano-dimensional (10-9 m) materials and the strong 

correlation between the size of the materials and their properties. It was physicist Prof. Richard 

Feynman who first introduced the concepts of nanotechnology in his ñThereôs plenty of room at 

the bottomò lecture series.2 Soon after, it became one of the fastest growing field of study in science 

and engineering. In some sense, nanoscience is not a new paradigm, as nanoscale objects already 

exist in nature as catalysts, porous materials, certain minerals, soot particles etc. However, 

innovation and progress in the development of scientific tools have allowed this rapid expansion 

and development of human derived nanoscale technology.  

 

1.2 QUANTUM DOTS AND THE IR APPLICATION  

Quantum dots (QDs, also known as semiconductor nanocrystals) have become a major component 

of nanotechnology since their discovery in 1983.3-4 Over the past few years, semiconductor 

nanocrystals, have been studied as  potential components of chemical5-8 and biological sensing9-

13, photovoltaics14-17, lasers18-21 and light emitting devices22-25 due to their unique photophysical 

properties. These include broad absorption spectra, tunable and narrow emission profiles, and high 

resistance towards photobleaching compared to organic dyes (see fig. 1).26-27 Many of these 

properties are engendered through the quantum confinement of charge carriers, within the 

nanometer dimension of semiconductor crystals.3, 28-31   
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Figure 1. Quantum dots. (A) Photo of CdS/ZnS & CdSe/ZnS QDs. (B) Emission spectra of same 

QDs. (C) Corresponding absorption spectra. 
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1.3 QUANTUM CONFINEMENT  

When a semiconductor nanocrystal absorbs a photon, an electron is excited to the conduction 

band from the valence band, leaving behind a hole in the valence bond. The coulomb attractive 

force between the hole and electron restricts their independent motion resulting in the formation 

of an electron-hole pair (e- - h+), or óexcitonô. The distance between the hole and electron is known 

as the Bohr-exciton radius. When the radius of the quantum dot is comparable to the excitonic 

Bohr radius, the excitons are strongly confined.3 The energy separation of the QD is expressed in 

the following equation: 

 

where, m*
e, m

*
h = effective masses of excited electron and hole, respectively, Egap is the band gap 

of the bulk (unconfined) material, and r is the radius of QD.  

There are two consequences that result from the strongly confined electronic structure. For 

one, the energy levels are quantized and discrete. As such, the electronic structure cannot be 

explained by a bulk band-like motif. The states are more like atomic energy levels, so quantum 

dots are sometimes referred as óartificial atomsô.3, 32-33 Another consequence is the fact that the 

band gaps of quantum dots are inversely proportional to the size of the dots (see fig. 2). Therefore, 

the electronic properties of the materials can be tuned by altering the size of the dots.  
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Figure 2. Electronic properties of a bulk semiconductor and quantum dots. (A) Electronic 

structure of a bulk semiconductor (B) Electronic structure of QDs.  
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Figure 3. Energy diagram of type-I and type-II quantum dots 

 

1.4 TYPES OF CORE-SHELL QUANTUM DOTS  

Surface passivation of quantum dots plays an important role for tuning their optoelectronic 

properties. Growing an inorganic shell on top of the core is an interesting and widely used protocol 

to restrict surface oxidation and alter the dotsô emissive properties. The choice of material for the 

shell is based on the band gap and crystal structure of the core quantum dots. The core-shell 

quantum dots are classified as either type-I or type-II heterostuctures (see fig. 3).  
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In the type-I core-shell heterostructure, the band gap of the core is smaller than the shell and 

the  edges of valence and conduction bands of the core lies within the bandgap of the shell.34 Thus, 

both the electron and the hole is strongly confined inside the core. This confinement in type-I core-

shell heterostructure helps to reduce surface defects and enhance the optical properties of quantum 

dots.35-37 Examples include CdSe/ZnS35, CdSe/CdS37, InAs/CdSe38, CdS/ZnS5 etc. 

In the type-II configuration, the valence or conduction band edge of the shell lies within the 

band gap of core, but not both.39 Due to this staggered alignment of band edges, the hole stays in 

the core while the electron is confined to the shell or vice versa. This spatial distribution of charge 

carriers leads to longer fluorescence lifetimes and lower quantum yield.40-41 Examples include 

CdTe/CdSe,40 CdSe/ZnTe,40 CdTe/CdS,42 ZnTe/CdS,43 ZnTe/CdSe,43  ZnSe/CdS41 etc.   

 

1.5 SYNTHESIS OF CORE-SHELL QUANT UM DOTS 

After the discovery of quantum dots in 1981 by Russian physicist Ekimov and US chemists 

Brus and Steigerwald,4 there are numerous protocols developed to synthesize high quality 

crystalline quantum dots. These include hydrothermal,44-45 microwave assisted,44, 46 rapid 

injection,47 decomposition of single source precursors,48 chemical/thermal oxidation,49-51 laser 

ablation52 and electrochemical etching.53-54 Usually, hydrothermal and microwave assisted 

synthesis leads to nanomaterials with low quantum yields, poor crystallinity and broad size 

distributions. However, the rapid injection protocol, first employed by Murray et al., is generally 

the best and most general method to synthesize different types of materials.47 In this procedure, 

one or more precursor solutions are injected at an elevated temperature into a high boiling-point 

solvent. Initially, the concentration of precursor is higher than the nucleation threshold and  
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Figure 4. Common protocol (rapid injection method) to synthesize quantum dots. Adapted and 

reprinted with permission from Ref. 31, Copyright 2014 The Royal Society of Chemistry 
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nucleation of semiconductor nanocrystals proceeds at a rapid pace. As the concentration of 

precursors drops, the nucleation of new dots stops and particles start to grow. There may be an 

overlap period where nucleation and growth occur simultaneously. If nanocrystal are grown with 

a low precursor concentration óOstwald ripeningô can occur,  which leads to a broad size 

distribution of nanomaterials.55 To control the growth and prevent Ostwald ripening, the solution 

can be cooled immediately after the injection of precursor at higher temperature at the subsequent 

nucleation stage. The rapid injection method accomplishes this by the sudden addition of a large 

quality of solvent when the precursors are added.  

To improve the stability, quantum yield and to minimize toxicity, quantum dot cores can be 

over coated with shell of another inorganic material.35-36, 56 Generally the shell formation involves 

epitaxial growth via the slow injection of overcoating precursors. Otherwise, non-epitaxial shell 

growth can occur which causes strain and defect formation at the core/shell interface, leading to 

deep-trap states and poor optical characteristics.57 

 Another important factor to synthesize high quality quantum dots is the purification of 

starting materials: oleic acid,58 oleylamine, tetradecylphosphonic acid59 and trioctylphosphonic 

acid.60 Purified starting materials enhance the reproducibility of the protocol and result in better 

surface passivation that leads to greater stability, less toxicity, and higher quantum yield. 

Consequently, the properties of the QD products is improved, especially compared to organic dyes. 

 

1.6 WATER SOLUBILIZATION  AND FUNCTIONALIZATI ON OF QUANTUM DOTS 

Quantum dots are highly robust ófluorophoresô  that have potential applications in the 

biological arena as biosensors, biomarkers, and bioimaging tools.61-63 However, the best quantum 
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dots are synthesized in hydrophobic solvents, which makes it very difficult to transfer dots from 

hydrophobic organic solvents into a hydrophilic aqueous one.64 There are two primary protocols 

for water solubilization of quantum dots: 1) ligand exchange, and, 2) the encapsulation method.  

The ligand exchange protocol involves replacement of the native hydrophobic ligands with 

hydrophilic ones to solubilize quantum dots in an aqueous solvent.62, 65-68 The most widely used 

ligand for this purpose is sulfur containing dihydrolipoic acid (DHLA).62, 69-71 Usually, ligand 

exchange with DHLA results in small hydrodynamic sized QDs that are suitable for biological 

applications. However, the quantum yield and the stability are significantly reduced.69, 72-73 

Another modified ligand exchange approach involves silanization, where QDs are coated with a 

cross-linked, near-monolayer of silica.74 Also, quantum yields are quite high and QDs are stable 

over months under ambient bench top condition. 

The encapsulation protocol coats QDs with a layer of hydrophilic compounds, known as 

encapsulants, on top of their native ligands for aqueous solubilization.75 Usually, the encapsulants 

are amphiphiles that have a hydrophobic part that interacts with the native ligands within the 

interior, whereas a hydrophilic portion stays outside and interacts with water. These ligands are 

typically block copolymers,76 lipids,77 phospholipids, or amphiphilic polymers.76, 78-80 While 

quantum yield of QDs remain same,56 the hydrodynamic size becomes large, which is incompatible 

with biological studies.65, 81-82 

Functionalization of quantum dots is another  important step to make it useful for biological 

applications.83 Usually, hydrophilic functional groups such as primarily amines and carboxylic 

acids, exist on the surface of water-soluble QDs. The common coupling reagents to conjugate with 

biological moieties (proteins, peptides, DNA etc) have carbodiimide functionality. Examples 
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include 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC),69, 75, 84-85 and methylpolyethylene 

glycol carbodiimide (MPEG CD).86 DMTMM. 85 is a similar reagent as EDC. To functionalize 

 

 

Scheme 1. Different protocols for water-solubilzation of QDs: Encapsulation and ligand exchange. 

Reprinted with permission from Ref. 87, Copyright 2014 The Royal Society of Chemistry 

 

thiol groups on the QD surface, sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-

carboxylate (sulfo-SMCC) is an efficient coupling reagent.86 Furthermore, there are examples of 

nonspecific,88-90 electrostatic 69, 76, 90-91 and adsorption56, 92 interactions that can be used for 

attaching biological moieties to QD surface devoid of any coupling reagents. 
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1.7 CONVENTIONAL QUANTUM  DOTS AND HISTORICAL  BACKGROUND  

Over past two decades, several synthetic strategies have emerged to prepare II-VI (i.e. CdS, 

CdSe, CdTe),47 IV-VI (PbS,PbSe),93-95 and III-V (InP, InAs)96-100 quantum dots, rods and other 

morphologies for applications in solar cells,16, 101 optoelectronic devices22, 102-103 and as fluorescent 

sensors.9-10, 104 Of these, research on II-VI (specifically cadmium chalcogenides) QDs are 

overwhelmingly reported in the literature due to the fact that their preparation is facile and 

precursors are mostly commercially available. If we look into the history, the scientific 

communityôs focus on cadmium chalcogenide began when Ekimov and Onushchenko first 

synthesized CdS dots in glass metals.4 At the same time Brusô group synthesized CdS QDs using 

cadmium and sulfur salts in water containing an amphiphilic polymer that served as the 

nanocrystalsô nucleation centers.76 The reaction was performed in air using commercially available 

precursors, which facilitated technological transferability to other research groups. In 1993, 

Murray et al. presented a procedure that produced high quality CdS, CdSe, and CdTe QDs by the 

rapid injection of precursors into a very hot amphiphilic coordinating solvent.47 The elements 

became supersaturated and precipitated in the form of nuclei that grew into nanocrystals.105 The 

great significance of this work is that semiconductor nanoscience became infinitely more 

accessible to the scientific community due to the improvement in the quantum dotsô quality. This 

came at the expense of additional complexity as toxic and flammable dimethyl cadmium was used 

as a precursor, which necessitated air free conditions. This issue was resolved through the use of 

significantly safer cadmium salts106 and phosphonates107 as reagents.  

Many applications for CdSe quantum dots became realizable by the inorganic passivation of 

the surface.35-36 Core-shell CdSe/ZnS quantum yields have been reported to be as high as 100%;56 

furthermore, they are more stable such that they may be dispersed into water for bioimaging 
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applications using the methods discussed in the previous section.61-62 CdSe/ZnS dots are also used 

in displays and are commercially available from LG, Samsung, and Sony.23, 108 To summarize, the 

scientific community has had significant incentive to invest in cadmium-based semiconductor 

quantum dot research, which has resulted in the development of robust synthetic procedures that 

produce highly stable, bright functional materials. However, one runs into several issues with 

quantum dot synthesis when investigating new materials outside of the cadmium chalcogenide 

semiconductor family. 

 

1.8 PNICTIDE (GROUP V) Q UANTUM DOTS  

Pnictide semiconductor quantum dots are an important family of materials for their potential 

applications in solar cell,109-111 thermoelectricity,112-113 bioimaging,114-117 and lithium ion 

batteries118-119. They are mostly classified as III-V (e.g. InAs, InP, GaAs, GaSb), II-V (e.g. Cd3As2, 

Zn3As2), I-V-VI2 (Cu/AgSbS2, Cu/AgSbSe2, Cu/AgBiS2 and Cu/AgBiSe2), and I3-V-VI4 (e.g. 

Cu3AsS4, Cu3SbS4, Cu3SbSe4, Ag3AsSe4) families of materials. However, scientific communitiesô 

attention was negligible towards examining pnictide materials compared to conventional cadmium 

chalcogenide QDs. The problem this thesis will address is the fact that, if the scientific community 

does not explore new materials, novel properties will not be realized. If we compare conventional 

quantum dots to pnictide ones, we find many interesting points to be considered. For example, 

InAs116 and InP117  have lower bandgaps for NIR fluorescence and less toxicity due to absence of 

Class-A elements. Thus, they are more efficient materials for bioimaging applications compared 

to CdSe QDs. GaAs is another interesting material for photovoltaics as it has better carrier 

dynamics compared to CdTe.109 Also, I-V-VI2 semiconductors, especially AgSbSe2 and AgBiSe2, 
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are efficient and inexpensive thermoelectric materials compared to well-known PbTe/AgSbTe2.
112, 

120 All these facts prove that pnictide family semiconductors possess potential applications in 

different fields of science. Every new discovery also creates potential challenges and for pnictide 

semiconductor nanocrystals, it is always associated with synthetic problems. 

The syntheses of group V QDs are extremely challenging and completely different compared 

to II-VI families. This is largely due to 1) the strong covalency of the crystal lattice, 2) the fact that 

pnictide ions require higher temperatures and longer annealing time to overcome higher reaction 

barriers.121 

 

Primary Pnictide Semiconductor Families Major Semiconductors 

Group III-V Binary: InP, GaP, InAs, GaAs, InSb, GaSb, 

Tertiary: InGaP, InGaAs,InGaSb  

Group II-V Cd3P2, Zn3P2, AlP, Cd3As2, Zn3As2, AlAs, 

Zn3Sb2, ZnSb, Ni3P, Co3P, Cu3P 

Group I3-V-VI4 Cu3AsS4, Cu3SbS4, Cu3BiS4, Cu3AsSe4, 

Cu3SbSe4, Cu3BiSe4, Ag3AsS4, Ag3SbS4 

Group I-V-VI2 CuSbS2, CuSbSe2, CuBiS2, CuBiSe2, 

AgSbS2, AgSbSe2, AgBiS2, AgBiSe2 

Group I3-V-VI3 Cu3AsS3, Cu3SbS3, Cu3SbSe3, Cu3BiS3, 

CuBiSe3, Ag3AsS3, Ag3SbS3,  

 

Table 1. Pnictide semiconductor families and examples of semiconductors 



 

 

14 

 

 

Figure 5. Pnictide precursors: A) Established pnictide precursors. B) Reaction mechanism of 

tris(trimethylsilyl)pnictide with In (+3) salt. 

 

 

 








































































































































































