Group-V Chemistry of Semiconductor Nanocrystals

BY

ADITA DAS
B.Sc., Presidency College, 2006
M.Sc., University of Calcutta, India 2008
M.Sc., University of Illinois at Chicago, US 2016

THESIS
Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Chemistry
in the Graduate College of the
University of Illinois at Chicago, 2017

Chicago, Illinois

Defense Committee:

Preston T. Snee, Chair and Advisor
Donald J. Wink, Department of Chemistry, UIC
Jordi Cabana, Department of Chemistry, UIC
Neal P. Mankad, Department of Chemistry, UIC
Zheng Yang, Department of Electrical and Computer Engineering, UIC
To my parents, Monoranjan Das and Purabi Das, my brothers, Sibaprasad Palchaudhuri and Manan Mandal, my sister, Sanchita Palchaudhuri

And

My loving husband, Nirupam

Thank you for your continuous support and love!!
ACKNOWLEDGEMENTS

It is my pleasure to acknowledge my family, friends and colleagues for their support, love and encouragement during my time in graduate school. First and foremost, I would like to thank my adviser, Prof. Preston T. Snee for being encouraging and supportive. He created an enjoyable environment in our lab and made himself approachable that we can easily clarify our doubts about a project or new ideas without any hesitation. He is very attentive and dedicated to students; when I used to work with white phosphorous, he used to work with me to make sure I understood the whole procedure properly. During my graduate work in this lab, he taught me many things regarding science, teaching, patience, rationalism, time management and many more. For your patience and optimism about my career, I am truly grateful.

I would like to thank my thesis committee members, Prof. Donald Wink, Prof. Jordi Cabana, Prof. Neal Mankad and Prof. Zheng Yang for their assistance, advices and support. Also, I am grateful to Dr. Dan McElheny to assist me during NMR experiments and data analysis. I have been fortunate enough to have supportive group members, and colleagues during my time in UIC. I would like to thank especially Asra Hassan, Mike Plews, Brittany Johnson for their help in my projects. A special thanks goes to group members of Prof. Jordi Cabana for assisting me during XRD measurements.

I am also grateful to my beloved friend circles (Anna, Navendu, Soumya, Shraboni, Ketaki, Ridhha, Aritra, Moumita, Shubhabrata, Rajdip, and Rai) who made these six years of my graduate life colorful. They were always with me, whenever they are needed. Finally, I would like to thank my parents, Monoranjan Das, Purabi Das and my best friend as well as husband, Nirupam Chakrabarty for their endless support and encouragement. However, I am thousands of miles away
from them, their unconditional love and belief in me made me strong to accomplish this milestone of my career. Thank you for everything!!
CONTRIBUTION OF AUTHORS

Chapter 1 explains a short introduction to QDs’ syntheses, characterization, conventional QDs and pnictide quantum dots. Here, I am adapting a figure (Figure 4) from my first author review paper, (“Synthetic Developments of Nontoxic Quantum Dots”, A. Das, P. T. Snee, ChemPhysChem, 2016, 17, 598-617) where I was the principle author and my adviser helped me to prepare manuscript. Chapter 2 describes one of my published manuscript (“Arsenic Silylamide: A Safe and Effective Precursor for Arsenide Semiconductor Nanocrystal Synthesis”, A. Das, A. Shamirian, and P. T. Snee, Chemistry of Materials, 2016, 28(11), 4058-4064) where I was the principle author and major contributor of this project. My research adviser, Prof. Preston T. Snee assisted me for DFT calculation and manuscript preparation. Chapter 3 represents another published manuscript (“Synthesis of High-Quality AgSbSe₂ and AgBiSe₂ Nanocrystals with Antimony and Bismuth Silylamide Reagents”, A. Das, B. Hsu, A. Shamirian, Z. Yang, P. T. Snee, Chemistry of Materials, 2017, just accepted), where I am the first author and major contributor of this project. My research adviser, Prof. Preston T. Snee assisted me to prepare this manuscript. Prof. Zheng Yang and Bo Hsu did the electrical measurement on pellets made of AgSbSe₂ and AgBiSe₂ nanoparticles. In both chapters (chapter 2 and 3), Armen Shamirian was responsible for collecting TEM data. Chapter 4 represents a library of my unpublished work focused on water solubilization of quantum dots using hydrophilic phosphonic acids. Chapter 5 represents a brief conclusion of the previous chapters.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Introduction</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 Quantum dots and their application</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.3 Quantum confinement</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Types of core-shell Quantum dots</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.5 Synthesis of core-shell Quantum dots</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.6 Water solubilization and functionalization of Quantum dots</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.7 Conventional quantum dots and historical background</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.8 Pnictide (group V) quantum dots</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.9 Overview of thesis</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Arsenic Silylamide: A Safe and Effective Precursor for Arsenide Semiconductor Nanocrystal Synthesis</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2 Experimental</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Materials</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Synthesis of bis[N,N-bis(trimethylsilyl)amido]chloroarsanic, [(N(SiMe$_3$)$_2$)$_2$AsCl</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Synthesis of In[N(SiMe$_3$)$_3$]</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2.4 Synthesis of indium arsenide (InAs) nanoparticles</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Synthesis of cadmium oleate (Cd(oleate)$_2$)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.6 Synthesis of cadmium arsenide (Cd$_3$As$_2$) nanoparticles</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.2.7 Synthesis of enargite (Cu$_3$AsS$_4$) nanoparticles</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.8 Mechanistic investigations via NMR</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2.9 Characterization</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.10 Quantum chemical modeling</td>
<td>25</td>
</tr>
<tr>
<td>2.3</td>
<td>Results and discussion</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Indium arsenide (InAs)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.3.2 Cadmium arsenide (Cd$_3$As$_2$)</td>
<td>32</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Enargite (Cu₃AsS₄)</th>
<th>Reaction mechanism for indium arsenide (InAs)</th>
<th>Mechanistic investigations via NMR</th>
<th>Mechanistic investigations via quantum chemical modeling with DFT</th>
<th>Reaction mechanism for cadmium arsenide (Cd₃As₂) and enargite (Cu₃AsS₄)</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>36</td>
<td>40</td>
<td>41</td>
<td>44</td>
<td>50</td>
<td>51</td>
</tr>
<tr>
<td>2.3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.4.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Synthesis of High-Quality AgSbSe₂ and AgBiSe₂ Nanocrystals with Antimony and Bismuth Silylamide Reagents</td>
<td>53</td>
<td>3.1 Introduction</td>
<td>53</td>
<td>3.2 Experimental</td>
<td>56</td>
</tr>
<tr>
<td>3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.1 Materials</td>
<td>56</td>
</tr>
<tr>
<td>3.2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.2 Synthesis of tris[N,N-bis(trimethylsilyl)amido]antimony, Sb[(N(SiMe₃)₂]₃</td>
<td>56</td>
</tr>
<tr>
<td>3.2.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.3 Synthesis of tris[N,N-bis(trimethylsilyl)amido]bismuth, Bi[(N(SiMe₃)₂)]₃</td>
<td>57</td>
</tr>
<tr>
<td>3.2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.4 Synthesis of AgSbSe₂ nanoparticles</td>
<td>58</td>
</tr>
<tr>
<td>3.2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.5 Synthesis of AgSbSe₂ nanoparticles in presence of a reducing agent</td>
<td>59</td>
</tr>
<tr>
<td>3.2.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.6 Synthesis of AgBiSe₂ nanoparticles</td>
<td>59</td>
</tr>
<tr>
<td>3.2.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.7 Surface ligand treatment and pellet formation</td>
<td>60</td>
</tr>
<tr>
<td>3.2.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.8 Characterization</td>
<td>61</td>
</tr>
<tr>
<td>3.2.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2.9 Electrical measurement</td>
<td>61</td>
</tr>
<tr>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3 Results and discussion</td>
<td>62</td>
</tr>
<tr>
<td>3.3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3.1 Silver antimony selenide (AgSbSe₂)</td>
<td>62</td>
</tr>
<tr>
<td>3.3.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3.2 Silver bismuth selenide (AgBiSe₂)</td>
<td>67</td>
</tr>
<tr>
<td>3.3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.3.3 Electrical measurements</td>
<td>70</td>
</tr>
<tr>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4 Conclusion</td>
<td>72</td>
</tr>
<tr>
<td>Chapter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hydrophilic Phosphonic Acid Ligands to Water Solubilize Quantum Dots</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>Experimental</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.1</td>
<td>Materials</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.2</td>
<td>Synthesis of methoxy poly(ethylene glycol, (M_n\approx 350))-bromide, mPEG350-Br</td>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.3</td>
<td>Synthesis of methoxy poly(ethylene glycol, (M_n\approx 750))-bromide</td>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.4</td>
<td>Synthesis of methoxy poly(ethylene glycol, (M_n\approx 350,750))-diethylphosphonate; mPEG((M_n\approx 350,750))-PO(OEt)_2</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.5</td>
<td>Synthesis of methoxy poly(ethylene glycol, (M_n\approx 350))-phosphonic acid, mPEG350-PO(OH)_2</td>
<td>82</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.6</td>
<td>Synthesis of 3-aminopropylphosphonic acid, (H_2N-(CH_2)_3-PO(OH)_2)</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.7</td>
<td>Synthesis of 8-aminoctylphosphonic acid, (H_2N-(CH_2)_8-Br)</td>
<td>85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8</td>
<td>Strategy 1: Direct synthesis of CdSe quantum dots in polar solvents</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.1</td>
<td>Direct synthesis of CdSe QDs in dimethylformamide</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.8.2</td>
<td>Strategy 2: Synthesis of CdSe quantum dots in hydrophobic solvent</td>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.9</td>
<td>Strategy 3: Ligand exchange from hydrophobic to hydrophilic phosphonic acid ligands</td>
<td>89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.10</td>
<td>Direct synthesis of cadmium oleate, Cd(Oleate)_2</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.10.1</td>
<td>Synthesis of oleic acid-coated CdSe/ZnS quantum dots</td>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.10.2</td>
<td>Ligand replacement from oleic acid to phosphonic acid in biphasic medium</td>
<td>91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2.11</td>
<td>Characterization</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Results and discussion</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.1</td>
<td>Strategy 1: Direct synthesis</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.2</td>
<td>Strategy 2: Synthesis in high boiling point solvent</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3.3</td>
<td>Strategy 3: Ligand exchange</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusion</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Conclusion</td>
<td>97</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1. Quantum dots</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2. Electronic properties of a bulk semiconductor and quantum dots</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.3. Energy diagram of type-I and type-II quantum dots</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4. Common protocol (rapid injection method) to synthesize quantum dots</td>
<td>7</td>
</tr>
<tr>
<td>Figure 1.5. Pnictide precursors</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.1. 1H NMR and 13C NMR of [(Me$_3$Si)$_2$N]$_2$AsCl</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.2. General characterization of indium arsenide</td>
<td>28</td>
</tr>
<tr>
<td>Figure 2.3. UV/Vis and XPS spectra of InAs</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.4. XRD of InAs with different reducing agents</td>
<td>30</td>
</tr>
<tr>
<td>Figure 2.5. TEM micrographs of InAs</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.6. XPS and UV/Vis spectra of cadmium arsenide</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.7. General characterization of Cd$_2$As$_3$ nanocrystals</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.8. TEM micrographs of Cd$_3$As$_2$ nanocrystals</td>
<td>35</td>
</tr>
<tr>
<td>Figure 2.9. General characterization of enargite nanocrystals</td>
<td>37</td>
</tr>
<tr>
<td>Figure 2.10. XPS and UV/Vis spectra of Cu$_3$AsS$_4$ NCs</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.11. XRD comparison of enargite, luzonite and tennanite</td>
<td>38</td>
</tr>
<tr>
<td>Figure 2.12. TEM micrographs of Cu$_3$AsS$_4$ NCs</td>
<td>39</td>
</tr>
<tr>
<td>Figure 2.13. Room temperature 1H NMR of [(Me$_3$Si)$_2$N]$_2$AsCl + LiEt$_3$BH</td>
<td>41</td>
</tr>
<tr>
<td>Figure 2.14. Room temperature 1H NMR of [(Me$_3$Si)$_2$N]$_2$AsCl + LiEt$_3$BH + InCl$_3$</td>
<td>42</td>
</tr>
<tr>
<td>Figure 2.15. 1H NMR of [(Me$_3$Si)$_2$N]$_2$AsCl + LiEt$_3$BH + InCl$_3$ at 60°C</td>
<td>43</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 2.16</td>
<td>1H NMR of $[(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsCl} + \text{LiEt}_3\text{BH} + \text{InCl}_3$ at 70°C</td>
</tr>
<tr>
<td>Figure 2.17</td>
<td>Reduction of $[(\text{H}_3\text{Si})_2\text{N}]_2\text{AsCl}$ by LiEt_3BH</td>
</tr>
<tr>
<td>Figure 2.18</td>
<td>Reduction of InCl_3 by LiMe_3BH</td>
</tr>
<tr>
<td>Figure 2.19</td>
<td>Reduction of $[(\text{H}_3\text{Si})_2\text{N}]_2\text{AsCl}$ by $\text{LiH}\cdot\text{InCl}_3$</td>
</tr>
<tr>
<td>Figure 2.20</td>
<td>Loss of LiCl from LiInCl$_4$</td>
</tr>
<tr>
<td>Figure 2.21</td>
<td>Loss of HCl by InCl$_3$. $[(\text{H}_3\text{Si})_2\text{N}]_2\text{AsH}$</td>
</tr>
<tr>
<td>Figure 2.22</td>
<td>Loss of LiCl from LiInCl$_4$. $[(\text{H}_3\text{Si})_2\text{N}]_2\text{AsH}$</td>
</tr>
<tr>
<td>Figure 2.23</td>
<td>Loss of HCl and LiCl from LiInCl$_4$. $[(\text{H}_3\text{Si})_2\text{N}]_2\text{AsH}$</td>
</tr>
<tr>
<td>Figure 2.24</td>
<td>The trend in indium precursor reactivity via binding energies</td>
</tr>
<tr>
<td>Figure 2.25</td>
<td>XRD pattern of metallic Cd nanoparticles</td>
</tr>
<tr>
<td>Figure 2.26</td>
<td>XRD pattern of Cu and Cu$_3$As nanoparticles</td>
</tr>
<tr>
<td>Figure 2.27</td>
<td>XRD pattern of GaAs nanoparticles</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>1H NMR of Sb[$(N(\text{SiMe}_3)_2)_3$ and Bi[$N(\text{SiMe}_3)_2]_3$</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Step by step processing of QDs solution into nanopellets</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>General characterization of AgSbSe$_2$ nanoparticles</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>XPS and UV/Vis spectra of AgSbSe$_2$ nanoparticles</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>TEM micrographs of AgSbSe$_2$ in presence of reducing agent</td>
</tr>
<tr>
<td>Figure 3.6</td>
<td>TEM micrographs of AgSbSe$_2$ nanoparticles</td>
</tr>
<tr>
<td>Figure 3.7</td>
<td>General characterization of AgBiSe$_2$ nanoparticles</td>
</tr>
<tr>
<td>Figure 3.8</td>
<td>XPS and UV/Vis spectra of AgBiSe$_2$ nanoparticles</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (continued)

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.9. TEM micrographs of AgBiSe$_2$ nanoparticles</td>
<td>69</td>
</tr>
<tr>
<td>Figure 3.10. FT-IR spectra of solvents and processed nanoparticles</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.11. I-V measurement of AgBiSe$_2$ and AgSbSe$_2$ NC pellets</td>
<td>71</td>
</tr>
<tr>
<td>Figure 3.12. Electrical measurement of AgBiSe$_2$ and AgSbSe$_2$ NC pellets at different points</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.1. 1H NMR of poly(ethoxy glycol, M_n~350)-bromide</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.2. 1H NMR of poly(ethoxy glycol, M_n~750)-bromide</td>
<td>79</td>
</tr>
<tr>
<td>Figure 4.3. 1H and 31P NMR of poly(ethoxy glycol, M_n~350)-diethylphosphonate</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.4. 1H and 31P NMR of poly(ethoxy glycol, M_n~750)-diethylphosphonate</td>
<td>81</td>
</tr>
<tr>
<td>Figure 4.5. 31P NMR of the mPEG350-phosphononic acids</td>
<td>83</td>
</tr>
<tr>
<td>Figure 4.6. 1H and 31P NMR of 3-aminopropylphosphonic acid</td>
<td>85</td>
</tr>
<tr>
<td>Figure 4.7. 1H and 31P NMR of 8-aminoctylphosphonic acid</td>
<td>86</td>
</tr>
<tr>
<td>Figure 4.8. UV-Vis spectra of CdSe QDs in DMF</td>
<td>94</td>
</tr>
<tr>
<td>Figure 5.1. Different types of phosphorous precursors</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1.1. Water solubilization of QDs</td>
<td>10</td>
</tr>
<tr>
<td>Scheme 2.1. Synthesis of [(Me₃Si)₂N]₂AsCl</td>
<td>19</td>
</tr>
<tr>
<td>Scheme 2.2. First steps of the formation of InAs quantum dots</td>
<td>49</td>
</tr>
<tr>
<td>Scheme 3.1. Synthesis of Sb[(Me₃Si)₂N]₃ and Bi[(Me₃Si)₂N]₃</td>
<td>55</td>
</tr>
<tr>
<td>Scheme 3.2. Description of general synthesis of AgSbSe₂ and AgBiSe₂</td>
<td>55</td>
</tr>
<tr>
<td>Scheme 4.1. Schematic diagram of hydrophilic phosphonic acids</td>
<td>76</td>
</tr>
<tr>
<td>Scheme 4.2. Schematic diagram of the synthesis of mPEG350-bromide</td>
<td>77</td>
</tr>
<tr>
<td>Scheme 4.3. Schematic diagram of the synthesis of mPEG750-bromide</td>
<td>78</td>
</tr>
<tr>
<td>Scheme 4.4. Schematic diagram of the synthesis of mPEG350,750-diethylphosphonate</td>
<td>80</td>
</tr>
<tr>
<td>Scheme 4.5. Schematic diagram of the synthesis of mPEG350-phosphonic acid</td>
<td>82</td>
</tr>
<tr>
<td>Scheme 4.6. Schematic diagram of the synthesis of 3-aminopropylphosphonic acid</td>
<td>83</td>
</tr>
<tr>
<td>Scheme 4.7. Schematic diagram of the synthesis of 8-aminoctylphosphonic acid</td>
<td>85</td>
</tr>
<tr>
<td>Scheme 4.8. Schematic diagram of the direct synthesis of CdSe QDs in polar solvent</td>
<td>88</td>
</tr>
<tr>
<td>Scheme 4.9. High temperature rapid injection synthesis of CdSe QDs</td>
<td>89</td>
</tr>
<tr>
<td>Scheme 4.10. Schematic diagram of ligand exchange protocol in biphasic medium</td>
<td>92</td>
</tr>
<tr>
<td>Scheme 4.11. Solvation energy of polar phosphonic acids vs. phosphonic acid coated QD</td>
<td>98</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table………………………………………………………………………………………………………Page

Table 1.1. Pnictide (Group-V) semiconductor families……………………………………13
LIST OF ABBREVIATIONS

DCC N,N'-dicyclohexylcarbodiimide
DCM Dichloromethane
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
EtOAc Ethyl acetate
FWHM Full width half maximum
LED Light emitting diode
LHMDS Lithium bis(trimethylsilyl)amide
mPEG Methoxypolyethylene glycol
NC Nanocrystal
NMR Nuclear magnetic resonance
OA Oleic acid
OLA Oleylamine
ODE 1-Octadecene
PAA Poly(acrylic acid)
PL Photoluminescence
QD Quantum dot
QY Quantum yield
Sulfo-SMCC Sulfosuccinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate
TEM Transmission electron microscopy
THF Tetrahydrofuran
TOP Triocylphosphine
TOPO Triocylphosphine oxide
XPS X-Ray Photoelectron Spectroscopy
XRD X-Ray diffraction
SUMMARY

Pnictide semiconductor nanoparticles and quantum dots are an important class of materials due to their potential applications in solar cell, thermoelectricity, bioimaging and biosensors. However, scientific communities’ attention on pnictide materials was negligible compared to conventional II-VI chalcogenide based QDs. This is primarily due to the challenging syntheses of group V semiconductor nanoparticles compared to II-VI families. This thesis focuses on the development of safe and effective methods for the synthesis of a wide variety of pnictide semiconductor nanoparticles, or quantum dots including materials within the III-V, II-V, I-VI$_2$ and I$_3$-V-VI$_4$ families. In first chapter, I have reported a relatively air-safe and less hazardous arsenic precursor, bis-[N,N-bis-(trimethylsilyl)amido] chloroarsenic, [(Me$_3$Si)$_2$N]$_2$AsCl (arsenic silylamide) that can be used to create a variety of crystalline, monodisperse II-V, III-V, and I$_3$-V-VI$_4$ family semiconductor quantum dots. The mechanism of the formation of quantum dots was also elaborated with the help of DFT calculation and NMR experiments. Next, I have expanded the scope of these silylamide-associated pnictide precursors, tris[N,N-bis(trimethylsilyl)amido]antimony, [(Me$_3$Si)$_2$N]$_3$Sb and tris[N,N-bis(trimethylsilyl)amido]bismuth, [(Me$_3$Si)$_2$N]$_3$Bi towards the exploration of novel antimony and bismuth nanomaterials, AgSbSe$_2$ and AgBiSe$_2$. Furthermore, electrical measurements of these materials were performed to characterize the electrical properties of the nanoparticles. In addition to pnictide nanomaterials’ syntheses, I have developed a series of hydrophilic phosphonic acids to solubilize QDs in aqueous solution using a variety of strategies. This project focuses to minimize the number of steps for water solubilization and enhance the efficacy of functionalization of QDs.
1 Introduction

1.1 INTRODUCTION

Nanotechnology is defined as “the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanometer scale.” The unique aspects of this subject are based on the study of nano-dimensional \((10^{-9} \text{ m}) \) materials and the strong correlation between the size of the materials and their properties. It was physicist Prof. Richard Feynman who first introduced the concepts of nanotechnology in his “There’s plenty of room at the bottom” lecture series. Soon after, it became one of the fastest growing field of study in science and engineering. In some sense, nanoscience is not a new paradigm, as nanoscale objects already exist in nature as catalysts, porous materials, certain minerals, soot particles etc. However, innovation and progress in the development of scientific tools have allowed this rapid expansion and development of human derived nanoscale technology.

1.2 QUANTUM DOTS AND THEIR APPLICATION

Quantum dots (QDs, also known as semiconductor nanocrystals) have become a major component of nanotechnology since their discovery in 1983. Over the past few years, semiconductor nanocrystals, have been studied as potential components of chemical and biological sensing, photovoltaics, lasers and light emitting devices due to their unique photophysical properties. These include broad absorption spectra, tunable and narrow emission profiles, and high resistance towards photobleaching compared to organic dyes (see fig. 1). Many of these properties are engendered through the quantum confinement of charge carriers, within the nanometer dimension of semiconductor crystals.
Figure 1. Quantum dots. (A) Photo of CdS/ZnS & CdSe/ZnS QDs. (B) Emission spectra of same QDs. (C) Corresponding absorption spectra.
1.3 QUANTUM CONFINEMENT

When a semiconductor nanocrystal absorbs a photon, an electron is excited to the conduction band from the valence band, leaving behind a hole in the valence bond. The coulomb attractive force between the hole and electron restricts their independent motion resulting in the formation of an electron-hole pair (e\(^-\) - h\(^+\)), or ‘exciton’. The distance between the hole and electron is known as the Bohr-exciton radius. When the radius of the quantum dot is comparable to the excitonic Bohr radius, the excitons are strongly confined.\(^3\) The energy separation of the QD is expressed in the following equation:

\[
\Delta E(r) = E_{\text{gap}} + \frac{\hbar^2}{8r^2} \left(\frac{1}{m_e^*} + \frac{1}{m_h^*} \right)
\]

where, \(m_e^*, m_h^*\) = effective masses of excited electron and hole, respectively, \(E_{\text{gap}}\) is the band gap of the bulk (unconfined) material, and \(r\) is the radius of QD.

There are two consequences that result from the strongly confined electronic structure. For one, the energy levels are quantized and discrete. As such, the electronic structure cannot be explained by a bulk band-like motif. The states are more like atomic energy levels, so quantum dots are sometimes referred as ‘artificial atoms’.\(^3, 32-33\) Another consequence is the fact that the band gaps of quantum dots are inversely proportional to the size of the dots (see fig. 2). Therefore, the electronic properties of the materials can be tuned by altering the size of the dots.
Figure 2. Electronic properties of a bulk semiconductor and quantum dots. (A) Electronic structure of a bulk semiconductor (B) Electronic structure of QDs.
Types of Core-Shell Quantum Dots

Surface passivation of quantum dots plays an important role for tuning their optoelectronic properties. Growing an inorganic shell on top of the core is an interesting and widely used protocol to restrict surface oxidation and alter the dots’ emissive properties. The choice of material for the shell is based on the band gap and crystal structure of the core quantum dots. The core-shell quantum dots are classified as either type-I or type-II heterostuctures (see fig. 3).
In the type-I core-shell heterostructure, the band gap of the core is smaller than the shell and the edges of valence and conduction bands of the core lies within the bandgap of the shell.34 Thus, both the electron and the hole is strongly confined inside the core. This confinement in type-I core-shell heterostructure helps to reduce surface defects and enhance the optical properties of quantum dots.35-37 Examples include CdSe/ZnS35, CdSe/CdS37, InAs/CdSe38, CdS/ZnS5 etc.

In the type-II configuration, the valence or conduction band edge of the shell lies within the band gap of core, but not both.39 Due to this staggered alignment of band edges, the hole stays in the core while the electron is confined to the shell or vice versa. This spatial distribution of charge carriers leads to longer fluorescence lifetimes and lower quantum yield.40-41 Examples include CdTe/CdSe,40 CdSe/ZnTe,40 CdTe/CdS,42 ZnTe/CdS,43 ZnTe/CdSe,43 ZnSe/CdS41 etc.

1.5 SYNTHESIS OF CORE-SHELL QUANTUM DOTS

After the discovery of quantum dots in 1981 by Russian physicist Ekimov and US chemists Brus and Steigerwald,4 there are numerous protocols developed to synthesize high quality crystalline quantum dots. These include hydrothermal,44-45 microwave assisted,44, 46 rapid injection,47 decomposition of single source precursors,48 chemical/thermal oxidation,49-51 laser ablation52 and electrochemical etching.53-54 Usually, hydrothermal and microwave assisted synthesis leads to nanomaterials with low quantum yields, poor crystallinity and broad size distributions. However, the rapid injection protocol, first employed by Murray et al., is generally the best and most general method to synthesize different types of materials.47 In this procedure, one or more precursor solutions are injected at an elevated temperature into a high boiling-point solvent. Initially, the concentration of precursor is higher than the nucleation threshold and
Figure 4. Common protocol (rapid injection method) to synthesize quantum dots. Adapted and reprinted with permission from Ref. 31, Copyright 2014 The Royal Society of Chemistry
nucleation of semiconductor nanocrystals proceeds at a rapid pace. As the concentration of precursors drops, the nucleation of new dots stops and particles start to grow. There may be an overlap period where nucleation and growth occur simultaneously. If nanocrystal are grown with a low precursor concentration ‘Ostwald ripening’ can occur, which leads to a broad size distribution of nanomaterials. To control the growth and prevent Ostwald ripening, the solution can be cooled immediately after the injection of precursor at higher temperature at the subsequent nucleation stage. The rapid injection method accomplishes this by the sudden addition of a large quality of solvent when the precursors are added.

To improve the stability, quantum yield and to minimize toxicity, quantum dot cores can be over coated with shell of another inorganic material. Generally the shell formation involves epitaxial growth via the slow injection of overcoating precursors. Otherwise, non-epitaxial shell growth can occur which causes strain and defect formation at the core/shell interface, leading to deep-trap states and poor optical characteristics.

Another important factor to synthesize high quality quantum dots is the purification of starting materials: oleic acid, oleylamine, tetradecylphosphonic acid and trioctylphosphonic acid. Purified starting materials enhance the reproducibility of the protocol and result in better surface passivation that leads to greater stability, less toxicity, and higher quantum yield. Consequently, the properties of the QD products is improved, especially compared to organic dyes.

1.6 WATER SOLUBILIZATION AND FUNCTIONALIZATION OF QUANTUM DOTS

Quantum dots are highly robust ‘fluorophores’ that have potential applications in the biological arena as biosensors, biomarkers, and bioimaging tools. However, the best quantum
dots are synthesized in hydrophobic solvents, which makes it very difficult to transfer dots from hydrophobic organic solvents into a hydrophilic aqueous one. There are two primary protocols for water solubilization of quantum dots: 1) ligand exchange, and, 2) the encapsulation method.

The ligand exchange protocol involves replacement of the native hydrophobic ligands with hydrophilic ones to solubilize quantum dots in an aqueous solvent. The most widely used ligand for this purpose is sulfur containing dihydrolipoic acid (DHLA). Usually, ligand exchange with DHLA results in small hydrodynamic sized QDs that are suitable for biological applications. However, the quantum yield and the stability are significantly reduced. Another modified ligand exchange approach involves silanization, where QDs are coated with a cross-linked, near-monolayer of silica. Also, quantum yields are quite high and QDs are stable over months under ambient bench top condition.

The encapsulation protocol coats QDs with a layer of hydrophilic compounds, known as encapsulants, on top of their native ligands for aqueous solubilization. Usually, the encapsulants are amphiphiles that have a hydrophobic part that interacts with the native ligands within the interior, whereas a hydrophilic portion stays outside and interacts with water. These ligands are typically block copolymers, lipids, phospholipids, or amphiphilic polymers. While quantum yield of QDs remain same, the hydrodynamic size becomes large, which is incompatible with biological studies.

Functionalization of quantum dots is another important step to make it useful for biological applications. Usually, hydrophilic functional groups such as primarily amines and carboxylic acids, exist on the surface of water-soluble QDs. The common coupling reagents to conjugate with biological moieties (proteins, peptides, DNA etc) have carbodiimide functionality. Examples
include 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC),69, 75, 84-85 and methylpolyethylene glycol carbodiimide (MPEG CD).86 DMTMM.85 is a similar reagent as EDC. To functionalize thiol groups on the QD surface, sulfosuccinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (sulfo-SMCC) is an efficient coupling reagent.86 Furthermore, there are examples of nonspecific,88-90 electrostatic 69, 76, 90-91 and adsorption56, 92 interactions that can be used for attaching biological moieties to QD surface devoid of any coupling reagents.

\textbf{Scheme 1.} Different protocols for water-solubilization of QDs: Encapsulation and ligand exchange. Reprinted with permission from Ref. 87, Copyright 2014 The Royal Society of Chemistry
1.7 **CONVENTIONAL QUANTUM DOTS AND HISTORICAL BACKGROUND**

Over past two decades, several synthetic strategies have emerged to prepare II-VI (i.e. CdS, CdSe, CdTe), IV-VI (PbS, PbSe), and III-V (InP, InAs) quantum dots, rods and other morphologies for applications in solar cells, optoelectronic devices and as fluorescent sensors. Of these, research on II-VI (specifically cadmium chalcogenides) QDs are overwhelmingly reported in the literature due to the fact that their preparation is facile and precursors are mostly commercially available. If we look into the history, the scientific community’s focus on cadmium chalcogenide began when Ekimov and Onushchenko first synthesized CdS dots in glass metals. At the same time Brus’ group synthesized CdS QDs using cadmium and sulfur salts in water containing an amphiphilic polymer that served as the nanocrystals’ nucleation centers. The reaction was performed in air using commercially available precursors, which facilitated technological transferability to other research groups. In 1993, Murray et al. presented a procedure that produced high quality CdS, CdSe, and CdTe QDs by the rapid injection of precursors into a very hot amphiphilic coordinating solvent. The elements became supersaturated and precipitated in the form of nuclei that grew into nanocrystals. The great significance of this work is that semiconductor nanoscience became infinitely more accessible to the scientific community due to the improvement in the quantum dots’ quality. This came at the expense of additional complexity as toxic and flammable dimethyl cadmium was used as a precursor, which necessitated air free conditions. This issue was resolved through the use of significantly safer cadmium salts and phosphonates as reagents.

Many applications for CdSe quantum dots became realizable by the inorganic passivation of the surface. Core-shell CdSe/ZnS quantum yields have been reported to be as high as 100%; furthermore, they are more stable such that they may be dispersed into water for bioimaging.
applications using the methods discussed in the previous section.61-62 CdSe/ZnS dots are also used in displays and are commercially available from LG, Samsung, and Sony.23,108 To summarize, the scientific community has had significant incentive to invest in cadmium-based semiconductor quantum dot research, which has resulted in the development of robust synthetic procedures that produce highly stable, bright functional materials. However, one runs into several issues with quantum dot synthesis when investigating new materials outside of the cadmium chalcogenide semiconductor family.

1.8 PNICTIDE (GROUP V) QUANTUM DOTS

Pnictide semiconductor quantum dots are an important family of materials for their potential applications in solar cell,109-111 thermoelectricity,112-113 bioimaging,114-117 and lithium ion batteries.118-119 They are mostly classified as III-V (e.g. InAs, InP, GaAs, GaSb), II-V (e.g. Cd\textsubscript{3}As\textsubscript{2}, Zn\textsubscript{3}As\textsubscript{2}), I-V-VI\textsubscript{2} (Cu/AgSbS\textsubscript{2}, Cu/AgSbSe\textsubscript{2}, Cu/AgBiS\textsubscript{2} and Cu/AgBiSe\textsubscript{2}), and I\textsubscript{3}-V-VI\textsubscript{4} (e.g. Cu\textsubscript{3}AsS\textsubscript{4}, Cu\textsubscript{3}SbS\textsubscript{4}, Cu\textsubscript{3}SbSe\textsubscript{4}, Ag\textsubscript{3}AsSe\textsubscript{4}) families of materials. However, scientific communities’ attention was negligible towards examining pnictide materials compared to conventional cadmium chalcogenide QDs. The problem this thesis will address is the fact that, if the scientific community does not explore new materials, novel properties will not be realized. If we compare conventional quantum dots to pnictide ones, we find many interesting points to be considered. For example, InAs116 and InP117 have lower bandgaps for NIR fluorescence and less toxicity due to absence of Class-A elements. Thus, they are more efficient materials for bioimaging applications compared to CdSe QDs. GaAs is another interesting material for photovoltaics as it has better carrier dynamics compared to CdTe.109 Also, I-V-VI\textsubscript{2} semiconductors, especially AgSbSe\textsubscript{2} and AgBiSe\textsubscript{2},
are efficient and inexpensive thermoelectric materials compared to well-known PbTe/AgSbTe$_2$.112 All these facts prove that pnictide family semiconductors possess potential applications in different fields of science. Every new discovery also creates potential challenges and for pnictide semiconductor nanocrystals, it is always associated with synthetic problems.

The syntheses of group V QDs are extremely challenging and completely different compared to II-VI families. This is largely due to 1) the strong covalency of the crystal lattice, 2) the fact that pnictide ions require higher temperatures and longer annealing time to overcome higher reaction barriers.121

<table>
<thead>
<tr>
<th>Primary Pnictide Semiconductor Families</th>
<th>Major Semiconductors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group III-V</td>
<td>Binary: InP, GaP, InAs, GaAs, InSb, GaSb, Tertiary: InGaP, InGaAs, InGaSb</td>
</tr>
<tr>
<td>Group II-V</td>
<td>Cd$_3$P$_2$, Zn$_3$P$_2$, AlP, Cd$_3$As$_2$, Zn$_3$As$_2$, AlAs, Zn$_3$Sb$_2$, ZnSb, Ni$_3$P, Co$_3$P, Cu$_3$P</td>
</tr>
<tr>
<td>Group I$_3$-V-VI$_4$</td>
<td>Cu$_3$As$_4$, Cu$_3$Sb$_4$, Cu$_3$Bi$_4$, Cu$_3$AsSe$_4$, Cu$_3$SbSe$_4$, Cu$_3$BiSe$_4$, Ag$_3$As$_4$, Ag$_3$Sb$_4$</td>
</tr>
<tr>
<td>Group I-V-VI$_2$</td>
<td>CuSbS$_2$, CuSbSe$_2$, CuBiS$_2$, CuBiSe$_2$, AgSbS$_2$, AgSbSe$_2$, AgBiS$_2$, AgBiSe$_2$</td>
</tr>
<tr>
<td>Group I$_3$-V-VI$_3$</td>
<td>Cu$_3$As$_3$, Cu$_3$Sb$_3$, Cu$_3$SbSe$_3$, Cu$_3$Bi$_3$, CuBiSe$_3$, Ag$_3$As$_3$, Ag$_3$Sb$_3$,</td>
</tr>
</tbody>
</table>

Table 1. Pnictide semiconductor families and examples of semiconductors
Figure 5. Pnictide precursors: A) Established pnictide precursors. B) Reaction mechanism of tris(trimethylsilyl)pnictide with In (+3) salt.
The most well-known pnictide reagents follow the tris(trimethylsilyl)pnictide motif. Examples include \((\text{Me}_3\text{Si})_3\text{P}\),\(^{122-126}\) \((\text{Me}_3\text{Si})_3\text{As}\),\(^{98,127}\) and \((\text{Me}_3\text{Si})_3\text{Sb}\).\(^{125,128-129}\) The chemistry of deadly gases like phosphine \((\text{PH}_3)\),\(^{130}\) arsenic \((\text{AsH}_3)\),\(^{125,131-133}\) and stibine \((\text{SbH}_3)\)\(^{134}\) is similar to the above. Due to the presence of labile \text{Me}_3\text{Si}\-ligands, pnictide ions can be easily generated under suitable conditions.\(^{115}\) All these pnictide reagents are highly air/moisture sensitive, hazardous and expensive, and many are not commercially available.\(^{135-136}\) Furthermore, the synthetic procedures for their preparation are highly air-sensitive and require special instrumentation that is not viable in normal laboratory condition. Also, these reagents are not chemically stable and usage of these precursors sometimes creates products with poor crystallinity and introduces reproducibility problems.\(^{97-98}\) Unfortunately, all these complications have restricted the application of pnictide quantum dots for commercial and biological purposes.\(^{137-138}\)

1.9 **OVERVIEW OF THESIS**

This thesis focuses on the development of safe and effective protocols for the synthesis of a wide variety of pnictide semiconductor nanoparticles, or quantum dots, including materials within the III-V, II-V, I-VI\(_2\) and I\(_3\)-V-VI\(_4\) families. I have reported a relatively air-safe and less toxic arsenic precursor that can be used to create a variety of crystalline, monodisperse II-V, III-V, and I\(_3\)-V-VI\(_4\) family semiconductor quantum dots. Specifically, I have synthesized bis-[N,N-bis-(trimethylsilyl)amido] chloroarsenic, \([\text{Me}_3\text{Si}]_2\text{N} \text{AsCl}\) (arsenic silylamide) and examined its use as an alternative pnictide precursor for quantum dots. The mechanism of the formation of quantum dots was also elaborated with the help of DFT calculation and NMR experiments. Next, I have expanded the scope of this research endeavor towards the exploration of novel silylamide-
associated antimony and bismuth precursors, tris[N,N-bis(trimethylsilyl)amido]antimony, [(Me$_3$Si)$_2$N]$_3$ and tris[N,N-bis(trimethylsilyl)amido]bismuth, [(Me$_3$Si)$_2$N]$_3$Bi. They have been successfully employed to synthesize two novel materials within the I-V-VI$_2$ family, AgSbSe$_2$ and AgBiSe$_2$. Furthermore, electrical measurements of these materials were performed to characterize the electrical properties of the nanoparticles. In addition to pnictide synthesis, I have demonstrated a series of hydrophilic phosphonic acids to solubilize QDs in aqueous solution using a variety of strategies. This project aims to minimize the number of steps for water solubilization and enhance the efficacy of functionalization of QDs.
2 Arsenic Silylamide: A Safe and Effective Precursor for Arsenide Semiconductor Nanocrystal Synthesis

The content of this chapter has been published in “Arsenic Silylamide: A Safe and Effective Precursor for Arsenide Semiconductor Nanocrystal Synthesis”, A. Das, A. Shamirian, and P. T. Snee, Chemistry of Materials, 2016, 28(11), 4058-4064. Adapted with permission from Ref.139. Copyright 2016 The American Chemical Society.

2.1 INTRODUCTION

Nanometer-scale colloidal semiconductor quantum dots, rods, and other morphologies are potential candidates for various applications in bioimaging, photovoltaics, electronic devices and sensing due to their unique optoelectronic properties. These include broad absorption spectra, narrow emission profiles, and high resistance towards photobleaching compared to organic dyes. Furthermore, these properties may be tuned with size via the quantum confinement effect, where excitonic charge carriers gain kinetic energy due to localization within the ~nanometer dimensions of the semiconductor particles. The syntheses of II-VI (i.e. CdE, E=S, Se, Te) quantum dots have been extensively studied; however, the same is not as true for materials composed within the II-V and III-V semiconductor families (i.e. pnictides such as arsenides and antimonides). As discussed in the previous chapter, the colloidal synthesis of pnictide nanocrystals is challenging and different compared to the II-VI family due to the strong covalency of the crystal lattice and the fact that pnictide ions require high temperature, long annealing times, and precursors with labile ligands to overcome activation barriers. These impediments limit the scope of effective pnictide reagents, the use of which often result in the formation of polydisperse samples.

Among pnictide semiconductors, metal arsenides are interesting as they are widely used in photovoltaics, electronic devices, and for biological imaging. Established strategies for their synthesis are based on the use of highly toxic arsine (AsH₃) gas, the desilylation reaction of
As(SiMe$_3)_3$, or the transmetallation of a semiconductor nanocrystal template. Each method presents significant impediments for the practical and, most importantly, safe synthesis of materials. For example, arsine gas is easily generated from the acid digestion of metal arsenides. However, its use requires special types of glassware that needs to be properly sealed due to the fact that AsH$_3$ gas is extremely toxic and dangerous. While the reagent As(SiMe$_3)_3$ is a liquid and thus significantly safer to handle, it is not commercially available. Unfortunately, the synthesis of As(SiMe$_3)_3$ is a highly air and moisture sensitive multistep procedure and requires specialized glassware. The reaction yield is low, and the reagent is pyrophoric. Transmetallation has been used to synthesize InAs and GaAs quantum dots. However, the template that was used in the synthesis (Cd$_3$As$_2$ nanoparticles) was created from As(SiMe$_3)_3$ via desilylation in the presence of metal salts.

The aim of this work is to explore the use of a non-volatile arsenide precursor that can be easily synthesized, is soluble in non-polar solvents, and has good stability under ambient condition, yet is sufficiently reactive in the presence of a reducing agent to produce semiconductor products in high yield. These properties were realized with bis[N,N-bis(trimethylsilyl)amido]chloroarsanic, [(Me$_3$Si)$_2$N]$_2$AsCl ("arsenic silylamide") as an alternative reagent compared to conventional arsenic precursors for quantum dot synthesis. I have studied this reagent due to its ease of synthesis, which involves the incorporation of the -N(Me$_3$Si)$_2$ ligand via one step metathesis reaction using commercially available AsCl$_3$ and lithium bis(trimethylsilyl)amide (LHMDS). The ligand imparts significant stability to the reagent most likely through the strong As-N bond. Furthermore, arsenic silylamide is a solid state chemical with minimal air sensitivity that enhances its ease of handling. I followed the general procedure by Hering et al. to synthesize arsenic silylamide as shown in Scheme 1, which was then used to synthesize quantum dots composed of II-V Cd$_3$As$_2$ and III-V...
InAs, while dots and other anisotropic shapes of I-VI Cu$_3$AsS$_4$ were realized. As it pertains to InAs synthesis, NMR investigations and quantum chemical modeling have shown that activation of the As-Cl bond using a reduced LiH·InCl$_3$ intermediate is the first step in the formation mechanism. A significant barrier is imposed by the coordination of “leftover” LiCl by the indium metal center, which is eventually shed with HCl to form a [N(SiMe$_3$)$_2$]$_2$As·InCl$_2$ intermediate. The metal center is likely reduced again to further activate free arsenic silylamide precursors in a cascade that eventually forms the InAs semiconductor nanocrystallite.

Scheme 1. Synthesis of bis[N,N-bis(trimethylsilyl)amido]chloroarsanic, [(Me$_3$Si)$_2$N]$_2$AsCl ("arsenic silylamide"), according to ref. 152. Reprinted with permission from Ref.139. Copyright 2016 The American Chemical Society.
2.2 EXPERIMENTAL

2.2.1 Materials

Arsenic chloride (AsCl$_3$, 99.5%), copper iodide (CuI, 99.995%), oleylamine (80-90%), and indium(III) chloride (InCl$_3$, 99.995%) were purchased from Acros Organics. 1-octadecene (ODE, 90%), lithium triethylborohydride (LiEt$_3$BH, 1.0 M solution in THF), hexane (anhydrous, 95%), and indium(III) acetate (In(OAc)$_3$, 99.99%) were bought from Alfa Aesar. Oleic acid (OA, 90%), lithium bis(trimethylsilyl)amide (Li[N(Si(Me)$_3$)$_2$], 97%), ethanol (>99.5%), cadmium acetate dihydrate (Cd(OAc)$_2$·2H$_2$O, 98%), sulfur (99.98%) were obtained from Sigma-Aldrich. Diethyl ether (purchased from VWR) was sparged with argon and dried using a Glass Contour Solvent System built by Pure Process Technology, LLC. Trioctylphosphine (TOP, 97%), was bought from Strem Chemicals Inc. Arsenic chloride, lithium triethylborohydride, and trioctylphosphine were stored and handled in an inert atmosphere glove box. Oleic acid was recrystallized according to the procedures in ref. 153, while other chemicals were used without further purification.

2.2.2 Synthesis of bis[N,N-bis(trimethylsilyl)amido]chloroarsanic, [(N(SiMe)$_3$)$_2$]$_2$AsCl

The procedure developed by Hering et al.152 was used to synthesize bis[N,N-bis(trimethylsilyl)amido]chloroarsanic with minor modification to increase the reaction yield. The preparation is based on the metathesis reaction between arsenic chloride and lithium bis(trimethylsilyl)amide (“LHMDS”). First, 1.62 g LHMDS (9.7 mmol) was dissolved in dry hexane (10 mL) and was slowly added dropwise to a stirred solution of 800 mg AsCl$_3$ (4.41 mmol) in hexane (10 mL) at –60 °C under an inert N$_2$ atmosphere. The solution became white in color and turbid during the addition, and was kept stirring at -60 °C for 6 hours. The resulting white solution was warmed to and
maintained at 0 °C for an additional 12 hours. Afterwards, the solution was filtered using a glass fritted funnel and the solvents were removed under reduced pressure, resulting a colorless, viscous liquid composed of [(Me₃Si)₂N]₂AsCl and the byproduct [(Me₃Si)₂N]AsCl₂. The byproduct was removed from the crude solution by reduced pressure distillation at 70 °C. After removal of the byproduct, the product was further recrystallized from a saturated hexane solution at -80 °C, resulting in the white solid product [(Me₃Si)₂N]₂AsCl, yield ~ 70%. The purity of the product was determined via ¹H and ¹³C NMR; ¹H NMR (25 °C, CDCl₃, 400MHz) 0.33 (s) and ¹³C NMR (25 °C, CDCl₃, 400 MHz) 5.27(s); The reagent was stored in a -80 °C freezer in a sealed vial.

Figure 1. ¹H NMR and ¹³C NMR of [(Me₃Si)₂N]₂AsCl. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
2.2.3 Synthesis of In[N(SiMe$_3$)$_2$]$_3$

Indium tris[bis(trimethylsilyl)amide] was synthesized following the method of Bürger et al.,154 and is reproduced here for completeness. First, 341 mg InCl$_3$ (1.54 mmol) was added into a two neck round bottom flask attached with reflux condenser under a dry nitrogen atmosphere. Next, 20 mL of dry ether was added to the flask and was heated to reflux. Next, 750 mg LHMDS (4.48 mmol) dissolved in 15 mL of dry ether was added dropwise into the refluxing InCl$_3$ / ether solution. The resulting mixture became turbid and was kept refluxing overnight. Afterwards, the solution was filtered through a glass fritted funnel under an inert N$_2$ atmosphere and the solvents were evaporated under reduced pressure. The product In[N(SiMe$_3$)$_2$]$_3$ formed as a pale yellow solid. yield: 85%.

2.2.4 Synthesis of indium arsenide (InAs) nanoparticles

10 mL of 1-octadecene and 7 mL of oleylamine were added into a three neck round bottom flask and degassed at 110 °C for 2 hours. Afterward, the solution was cooled to 30°C. Next, 269 mg of [(Me$_3$Si)$_2$N]$_2$AsCl (0.625 mmol) dissolved in 1 mL ODE was added into the flask followed by an addition of 1.5 mL of 1.0 M LiEt$_3$BH / THF solution. This resulted in the formation of a brown discoloration. Finally, 0.25 mmol of an indium metal precursor (55 mg of InCl$_3$, 73 mg of In(OAc)$_3$, or 149 mg of In[N(SiMe$_3$)$_2$]$_3$) in 2 mL of TOP was injected into the flask, causing the solution to become black in color. The solution was heated slowly to and maintained at 250 °C for 30-35 min. Afterwards, the heating mantle was removed and the solution was allowed to cool to room temperature. The sample was stored under an inert atmosphere in a glovebox.
2.2.5 *Synthesis of cadmium oleate (Cd(oleate)₂)*

In a three neck round bottom flask attached with thermocouple and reflux condenser, 10 mL of 1-octadecene, 33 mg of cadmium acetate dehydrate (0.125 mmol), and 106 mg of oleic acid (0.375 mmol) were added and degassed for 1 hour at 120 °C. The temperature of the solution was increased to and maintained at 250 °C for 30 minutes to complete the reaction; afterward the solution was allowed to cool to room temperature. This solution was used without modification for the synthesis of Cd₃As₂ dots as discussed below.

2.2.6 *Synthesis of cadmium arsenide (Cd₃As₂) nanoparticles*

The synthesis follows the same general procedure employed for InAs nanoparticles. 10 mL of 1-octadecene and 7 mL of oleylamine were added into a three neck round bottom flask and degassed at 110°C for 2 hours. Afterward, the solution was cooled to 30 °C. Next, 96 mg of [(Me₃Si)₂N]₂AsCl (0.224 mmol) dissolved in ODE was added into the flask, followed by 0.6 mL of 1.0 M LiEt₃BH / THF solution, resulting in a brown discoloration. Finally, 10 mL of the Cd(oleate)₂ solution discussed above was injected into the flask, which blackened the solution as observed in the synthesis of InAs dots. The solution was heated slowly to and maintained at 230 °C for 15-20 min. Afterwards, the heating mantle was removed and the solution was allowed to cool to room temperature. The sample was stored under an inert atmosphere in a glovebox. Generally, the Cd₃As₂ quantum dots are stable for 3-4 months inside glovebox under nitrogen atmosphere.
2.2.7 Synthesis of enargite (Cu$_3$AsS$_4$) nanoparticles

This synthesis is a derivative of the procedures described above. 10 mL of 1-octadecene and 7 mL of oleylamine were added into a three neck round bottom flask and degassed at 110 °C for 2 hours. Afterward, the solution was cooled to 30 °C. Meanwhile, 35 mg of CuI (0.186 mmol) was added to 6 mL of oleylamine in a vial with a septa cap under a nitrogen atmosphere. It was degassed at 60 °C for 30 minutes, heated to 80°C for one hour, and then allowed to cool to room temperature. In another septum covered vial, 30 mg of sulfur (0.93 mmol) was added to 5 mL of oleylamine. The solution was heated to 60 °C for 30 min to completely dissolve the sulfur. Next, 160 mg of [(Me$_3$Si)$_2$N]$_2$AsCl (0.371 mmol) dissolved in ODE was first added into the three neck round bottom flask followed by 0.9 mL of 1.0 M LiEt$_3$BH / THF solution, resulting in a brown discoloration. Finally, the CuI and S solutions were injected into the flask in that order. The solution turned black following the addition of CuI; however, subsequent addition of sulfur transformed the solution into a clear brown color. The solution was then heated to and maintained at 240-245 °C for 15 min. Afterwards, the solution was allowed to cool to room temperature, and the sample was stored under an inert atmosphere in a glovebox.

2.2.8 Mechanistic investigations via NMR

In this study, 1 equivalent of the reducing agent LiEt$_3$BH in toluene-d$_8$ was added to bis[N,N-bis(trimethylsilyl)amido]chloroarsenic (also dissolved in toluene-d$_8$) at -30°C under a nitrogen atmosphere in a glove box. Time-resolved 1H NMR spectra were recorded immediate after until the sample warmed to room temperature. The THF peak at 1.47 ppm was used as an internal standard by setting the integration to 1.0.
2.2.9 Characterization

For characterization, a small quantity of each sample was precipitated with ethanol and centrifuged to remove impurities. The precipitate was then redispersed in dry hexane and characterized optically and by X-ray photoelectron (XPS) and X-ray diffraction (XRD) spectroscopy. Absorption and emission measurements were performed with a Varian Cary 300 Bio UV/Vis and a customized Fluorolog (HORIBA Jobin Yvon) modular spectrofluorometer, respectively. XPS analyses were performed on a Kratos Axis 165 using a monochromatic Al Kα source operating at 12 kV and 10 mA to produce an X-ray power of 120 W. Spectra were collected with a photoelectron takeoff angle of 90° from the sample surface plane, in energy steps of 0.1 eV, and a pass energy of 20 eV for all elements. All spectra were referenced to the C\textsubscript{1s} binding energy (284.8 eV). X-ray diffraction studies were performed on a D8 Advance ECO Bruker XRD diffractometer using monochromatized Cu Kα (λ= 1.54056 Å) radiation. Transmission electron microscopy (TEM) measurements were performed using a JEOL JEM-3010 operating at 300 keV. A 300 mesh copper grid was used for InAs and 300 mesh gold grid were used for Cd\textsubscript{3}As\textsubscript{2} and Cu\textsubscript{3}AsS\textsubscript{4} nanoparticle imaging. 1H NMR and 13C NMR spectra were recorded at various temperatures using Bruker Avance DRX 400 NMR spectrometer.

2.2.10 Quantum Chemical Modeling

All species were modeled using Density Functional Theory (B3LYP155-156 using the Gaussian '09 package.157 H, Li, C, N, O, and Cl atoms were described with a 6-311+g(d,p)158-159 basis set, while In atoms used the LANL2DZ basis set and effective core potential.160 The arsenic substrate [(Me\textsubscript{3}Si)\textsubscript{2}N]\textsubscript{2}AsCl was modeled using [N(SiH\textsubscript{3})\textsubscript{2}]\textsubscript{2}AsCl, while superhydride was modeled with LiMe\textsubscript{3}BH. All geometry optimizations, including saddle points, were characterized with frequency analyses. Saddle
points were also examined using intrinsic reaction coordinate analysis. Zero point vibrational corrections were added to the energies. GaussView was used to visualize the results.

2.3 RESULTS AND DISCUSSION

Nanocrystalline quantum dots and rods of InAs, Cd$_3$As$_2$, and Cu$_3$AsS$_4$ have been synthesized with [(Me$_3$Si)$_2$N]$_2$AsCl using LiEt$_3$BH (“superhydride”) to activate the arsenic precursor. I have already discussed the motivations for synthesizing the reagent arsenic silylamide, which is a solid at room temperature with minimal air sensitivity. Although the chemical was handled inside a glove box before use, it can be stored safely in a sealed vial in a -80 °C freezer. However, this enhanced stability necessitates the use of superhydride during the synthesis of semiconductor nanomaterials as was also observed in a previous study on antimonide quantum dots using a similar precursor.

The reaction protocols to synthesize InAs, Cd$_3$As$_2$, and Cu$_3$AsS$_4$ nanoparticles all follow a general procedure where metal salts (In$^{+3}$, Cd$^{+2}$, and Cu$^{+1}$), [(Me$_3$Si)$_2$N]$_2$AsCl, and superhydride are mixed in a coordinating solvent and are subsequently annealed briefly at a high temperature. Unfortunately, the resulting InAs and Cd$_3$As$_2$ particles were observed to have somewhat poor colloidal stability. The presence of the reducing agent was found to be crucial as, without it, products are formed only at very high temperature (~420°C) after prolonged annealing times (~2-3 hours). Usually, injection of LiEt$_3$BH and the arsenic precursor at lower temperature yields better results irrespective of the nature of the quantum dots. Injection at higher temperatures leads to the formation of a brown mass, most likely a decomposition product of the arsenic precursor. Discussed below are the results from each individual system, followed by the experimental and theoretical examination of the reaction mechanism.
2.3.1 **Indium arsenide (InAs)**

Indium arsenide is a direct low band gap (0.4eV) material that has potential applications for infrared detectors,\(^{163}\) for telecommunication and photovoltaic systems, and *in vivo* bioimaging.\(^{114-115}\) Wells et al. first developed a strategy to react In\(^{3+}\) salts with As(SiMe\(_3\))\(_3\) at a high temperature (~400°C) to synthesize crystalline InAs quantum dots.\(^{127}\) Zhang et al. produced InAs nanocrystals using in-situ generated arsine gas(AsH\(_3\)).\(^{131}\) Later modifications to this procedure were reported where the reaction temperatures, solvents, and the identity of the surface coordinating ligands (TOP, oleylamine, oleic acid, myristic acid, etc.) were altered.\(^{38, 132-133, 164}\) Further developments included the creation of core-shell quantum dots with narrow size distribution and 90% emission efficiency\(^{98}\) that could be water solubilized.\(^{115}\) However, all these reported methods used highly toxic and volatile As(SiMe\(_3\))\(_3\) or AsH\(_3\) gas to synthesize InAs nanocrystals.

In this study, InAs nanoparticles were synthesized using various In\(^{3+}\) salts with [(Me\(_3\)Si)_2N]_2AsCl in presence of LiEt\(_3\)BH. As stated previously, the particles were flocculated after synthesis and required pyridine to disperse the materials in hexane for analysis. Fig. 2 and 5 show TEM micrographs of crystalline 4-5 nm diameter InAs quantum dots that are well within the range of quantum confinement (<35 nm).\(^{100}\) The crystal phase of the nanoparticles was confirmed by powder XRD. It is consistent with the characteristic pattern of the cubic phase of InAs with corresponding peaks of [111], [200], [220] and [311]. However, narrow XRD peak pattern for InAs shows the yield of InAs QDs formation may be low. Along with nanoparticles, microparticles also forms here. XPS result shown in Fig. 3A reveal a 1:1.3 In:As composition, where the excess arsenic is likely due to unreacted precursors that were used in excess as seen in similar studies.\(^{95}\) The absorption spectrum is rather featureless (Fig. 3), which unfortunately is an indicator of polydispersity. Furthermore, no emission was observed from these samples.
Three metal precursors were used in this study, specifically InCl$_3$, In(OAc)$_3$, and In[N(SiMe$_3$)$_2$]$_3$. The most significant difference in their usage concerns the amount of indium metal particle byproducts that were formed which we believe is due to direct reduction of the precursor. The use of In[N(SiMe$_3$)$_2$]$_3$ resulted in the most metal byproducts followed by In(OAc)$_3$, while no byproducts were observed in the InCl$_3$ studies. The above reactivity trend of In$^{+3}$ may be the result of the interaction of the arsenic reagent with the reduced metal species, as the DFT binding energy is strongest for LiHInCl$_3$ and weakest for LiHIn[N(SiMe$_3$)$_2$]$_3$ as shown in Fig. 24.

Figure 2. General characterization of Indium arsenide (InAs) NCs. (a) TEM image of InAs quantum dots. (b) X-ray diffraction pattern of the same. (c) XRD plot of same InAs in terms of log$_e$(I) vs. 2θ, where I= intensity. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 3. X-ray photoelectron and UV/Vis spectra of InAs NCs. a) XPS survey spectra of InAs quantum dots. b) UV/Vis spectra of InAs quantum dots. No emission was observed from this sample. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 4. X-ray diffraction patterns of nanoparticles synthesized as a function of reducing agents, [LiEt₃BH, LiBH₄, LiAlH₄, or NaBH₄, in the presence of InCl₃] and indium precursors [In[N(SiMe₃)₂]₃ or In(OAc)₃]. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 5. TEM micrographs of InAs nanocrystals in presence of LiEt₃BH. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
As a result, LiHInCl$_3$ is best capable of “capturing” the arsenic reagent to reduce it. It was also found that the lithium ion is more labile in the LiHInCl$_3$ complex, which would favor reduced arsenic and LiCl products as part of the reaction mechanism discussed in the following section. I also examined a variety of reducing agents and found that LiEt$_3$BH, LiBH$_4$, and LiAlH$_4$ are all effective for the production of InAs nanomaterials as shown in Fig. 4. The use of sodium borohydride failed to result in the formation of InAs nanocrystals.

2.3.2 Cadmium arsenide (Cd$_3$As$_2$)

Cadmium arsenide is a narrow band gap (~0.15 eV)\(^{165}\) semiconductor with a large excitonic bohr radius (~47 nm),\(^{166-167}\) high dielectric constant,\(^{168}\) and high electron mobility.\(^{169}\) All these features suggest that it has significant potential for use in photovoltaic and telecommunication devices. However, there are few examples of the synthesis of cadmium arsenide quantum dots. Henglein and co-workers first synthesized Cd$_3$As$_2$ nanocrystals from Cd$^{2+}$ salts and arsine gas in aqueous solution.\(^{170}\) Later, Harris et al. synthesized NIR emissive Cd$_3$As$_2$ nanocrystals using (TMS)$_3$As and Cd-myristate via a double injection method.\(^{166}\) Recently, Yang et al.\(^{171}\) and Miao et al.\(^{172}\) used toxic arsine gas to synthesize monodisperse Cd$_3$As$_2$ nanocrystals. As in other examples, these procedures are based on highly toxic, flammable, volatile arsenic precursors.

In this report, Cd$_3$As$_2$ nanoparticles were synthesized using Cd-oleate with [(Me$_3$Si)$_2$N]$_2$AsCl in the presence of LiEt$_3$BH. XPS result confirms the composition of Cd$_3$As$_2$ nanoparticles with slight excess of arsenic (1:1.3) (see Fig. 6). The crystal phase of the nanoparticles was confirmed by powder XRD and is consistent with characteristic pattern of the tetragonal phase of Cd$_3$As$_2$ with corresponding peaks at [224], [325], [220] and [408]. However, narrow XRD peak pattern for Cd$_3$As$_2$ shows the yield of Cd$_3$As$_2$ QDs formation is quite low. Along with nanoparticles, microparticles also forms here. Fig. 7 & 8 shows an X-
ray diffraction pattern and TEM micrographs of relatively small (3.7± 0.6 nm diameter) and crystalline Cd$_3$As$_2$ nanoparticles.

Three Cd$^{2+}$ salts were used in this study, specifically anhydrous CdCl$_2$, Cd(OAc)$_2$, and Cd(II)-oleate. However, crystalline Cd$_3$As$_2$ were formed with Cd(II)-oleate under the conditions employed whereas only cadmium metal nanoparticles originated from use of the other precursors. As in the InAs study, this is attributed to the increased self-reactivity of the reduced metal compared to arsenic silylamide. As observed in the InAs study, the absorption spectra of the samples were featureless, and no emission was observed; see Fig. 6.

![Figure 6](image)

Figure 6. XPS survey and UV/Vis spectra of Cd$_3$As$_2$ NCs. a) XPS survey spectra of Cd$_3$As$_2$ quantum dots. b) UV/Vis spectra of Cd$_3$As$_2$ quantum dots. No emission was observed from this sample. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 7. General Characterization of cadmium arsenide (Cd$_3$As$_2$) NCs. (a) TEM image of Cd$_3$As$_2$ nanoparticles. (b) X-ray diffraction pattern of the same. (c) High resolution TEM image of crystalline Cd$_3$As$_2$ showing lattice fringes. (d) Size distribution of Cd$_3$As$_2$ dots; red line is a Gaussian fit to the data. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 8. TEM micrographs of Cd$_3$As$_2$ nanocrystals in presence of LiEt$_3$BH. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
2.3.3 **Enargite (Cu$_3$AsS$_4$)**

Orthorhombic copper arsenic sulfide (Cu$_3$AsS$_4$), known as enargite, is a member of I$_3$-V-II$_4$ family of semiconductors.$^{173-174}$ It has a 1.32 eV direct bandgap with intrinsic p-type conductivity. The low bandgap and other electrical properties make it highly suitable for photovoltaic applications.$^{175-177}$ However, Cu$_3$AsS$_4$ has attracted little attention from scientific community, which may be due to the difficulty with its synthesis. To our knowledge, there is only one report on the synthesis of tetragonal Cu$_3$AsS$_4$ (luzonite) and cubic Cu$_{12}$As$_4$S$_{13}$ (tennanite) nanocrystals,178 but no reports for enargite QDs exists.

Ternary Cu$_3$AsS$_4$ dots, rods, and multipods were synthesized using CuI and sulfur with [(Me$_3$Si)$_2$N]AsCl in presence of LiEt$_3$BH. Fig. 9 shows a TEM micrograph and X-ray diffraction spectrum of Cu$_3$AsS$_4$ nanoparticles which displays the characteristic complex pattern of the orthorhombic phase of Cu$_3$AsS$_4$. XPS results (Fig. 10) confirms the presence of copper, arsenic and sulfur; however, the atomic concentration of sulfur and arsenic are higher than expected (Cu:As:S = 0.36:1.08:2.71), most likely due to the fact that they were used in excess. A very interesting feature of this study is the anisotropic nature of the materials formed as seen in Fig. 9 and 12. Examination of several images suggests that the elongated structures are composed of smaller subunits, which suggests an “oriented attachment” mechanism for anisotropic growth.$^{179-181}$ This mechanism is commonly observed in the synthesis of semiconductor nanorods and wires. To provide a more analytical characterization, histograms the widths and lengths of ~100 anisotropic enargite nanorods are shown in Fig. 9c. A Gaussian fit to the width (5.5 ± 0.9 nm) was used to re-create the length distribution by summing $2\rightarrow4$ random numbers that conform to the width statistics as shown in the red line fit in Fig. 9c. Overall the fit is not ideal ($r^2=0.60$); however, the overall shape and breath of the length distribution are recreated by this mathematical analysis. Coupled
with the TEM data, we believe that smaller monomers of Cu$_3$AsS$_4$ quantum dots fuse together to form the rods and multipods of enargite nanocrystals.

Figure 9. General characterization of enargite (Cu$_3$AsS$_4$) NCs. (a) TEM images of crystalline Cu$_3$AsS$_4$ quantum dots and rods. (b) X-ray diffraction pattern of Cu$_3$AsS$_4$ nanocrystals. The low angle shoulder is likely due to organic byproducts (see ref. 182). (c) Histogram of the width and length of various Cu$_3$AsS$_4$ rods (circles) with fits to the data (solid lines). Inset: TEM image reveals how Cu$_3$AsS$_4$ rods are likely composed of fused monomers. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 10. XPS survey and UV/Vis spectra of Cu$_3$AsS$_4$ NCs. a) XPS survey spectra of Cu$_3$AsS$_4$ quantum dots. b) UV/Vis spectra of Cu$_3$AsS$_4$ quantum dots. No emission was observed from this sample. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

Figure 11. X-ray diffraction patterns of Cu$_3$AsS$_4$ quantum rods compared to enargite (PDF#: 00-035-0775), luzonite (PDF#: 00-010-0450), and tennanite (PDF#: 01-076-0101). The particles are clearly a match to the orthorhombic enargite structure. The standard sample data were calculated by convolving the known d-spacing with Lorentzian lineshapes as defined by the Debye-Scherrer equation. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 12. TEM micrographs of Cu$_3$AsS$_4$ quantum dots, rods, and multipods. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
2.3.4 Reaction mechanism for indium arsenide (InAs)

Temperature dependent NMR and theoretical modeling have been used to investigate the reaction mechanism by which arsenide semiconductor nanoparticles are synthesized using arsenic silylamide, \(\text{InCl}_3 \), and reducing agent. The first, rather obvious step is that superhydride transforms arsenic silylamide into the reduced form via: \([(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsCl} \rightarrow [\text{N(SiMe}_3)_2]_2\text{AsH} \). This is confirmed by \(^1\text{H} \) NMR as shown in Fig. 13, and characterized theoretically as seen in Fig. 17. However, minimal activation of the As-Cl bond was observed when the same reaction was performed in the presence of \(\text{InCl}_3 \) as shown in Fig. 14. In this system, \(\text{InCl}_3 \) is likely reduced to LiHInCl\(_3\) by superhydride, which is \(\sim 50 \text{ kcal/mol} \) energetically downhill barrierless reaction as shown in Fig. 15. This is also consistent with the many reports on the use of \(\text{InCl}_3 \) in organic reduction reactions.\(^\text{183}\) Warming the solution resulted in arsenic silylamide reduction (Figs. 14, 15, and 16), the overall integration of which becomes smaller over time as a black precipitate (most likely InAs quantum dots) formed. This must be due to the action of LiHInCl\(_3\) as a reducing agent, which forms \([\text{N(SiMe}_3)_2]_2\text{AsH} \) with a 28 kcal/mol barrier (Fig. 16).

The next steps were explored entirely computationally, where the end goal was to remove ligands from the metal center. It was found that \(\text{InCl}_3 \) can coordinate without a barrier to the reduced arsenic center to from a complex that can subsequently shed HCl over a 30 kcal/mol barrier (Fig. 18). Subsequent interaction with a second equivalent of reducing agent results in LiH transfer to the indium metal center, which we believe leads to a chain reaction of arsenic activation and indium coordination until the InAs quantum dot is formed. These results are summarized in Scheme 2. One issue concerns LiCl coordination to \(\text{InCl}_3 \), which occurs after activation of the As-Cl bond. The LiInCl\(_4\) intermediate is very stable as loss of LiCl is highly energetically unfavorable \((+42 \text{ kcal/mol}, \text{Fig. S15}) \). Coordination of LiInCl\(_4\) to the reduced arsenic substrate reduces the energetic cost of LiCl loss to \(+31 \text{ kcal/mol} \) (Fig. 19); alternatively, HCl loss may occur with a similar \(+30 \text{ kcal/mol} \) barrier (Fig. 20). However, the interaction energy of
LiInCl₄ with [(H₂Si)₂N]₂AsH is (the model substrate) very low, so neither of the above likely occurs in a high temperature solution. Thus, it could be true that the most significant bottleneck of this reaction is the loss of LiCl by LiInCl₄ that forms after arsenic reduction.

2.3.4.1 Mechanistic investigations via NMR

Experimental procedure has been explained in section 2.2.8. Temperature dependent NMR spectra are given below to explain the reaction between [(Me₃Si)₂N]₂AsCl with InCl₃ in presence of LiEt₃BH.

Figure 13. Room temperature ¹H NMR spectrum of bis[N,N-bis(trimethylsilyl)amido]chloroarsenic in presence of LiEt₃BH reveals the formation of [(Me₃Si)₂N]₂AsH. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
We have observed that \([(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsCl}\) was reduced to \([(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsH}\) in presence of LiEt$_3$BH (Fig. 13). However, when the same experiment was performed with an addition of 1 equivalence of InCl$_3$, the formation of reduced species was suppressed (Fig. 14). Increasing the temperature of the solution resulted in the reduction of bis[N,N-bis(trimethylsilyl)amido]chloroarsenic (Figs. 15, 16), the integration of which slowly decreased most likely due to InAs QD formation.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{spectrum.png}
\caption{Room temperature 1H NMR spectrum of bis[N,N-bis(trimethylsilyl)amido]chloroarsenic in presence of LiEt$_3$BH (1 equivalent) and InCl$_3$ (1 equivalent). It shows that the formation of the reduced \([(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsH}\) species (0.29 ppm) is suppressed. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.}
\end{figure}
Figure 15. 1H NMR spectrum of bis[N,N-bis(trimethylsilyl)amido]chloroarsenic in presence of 1 equivalent of both LiEt$_3$BH and InCl$_3$. It shows that the formation of the reduced [(Me$_3$Si)$_2$N]$_2$AsH species (0.29 ppm) occurs after the solution is warmed to 60 °C. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 16. 1H NMR spectrum of $[(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsCl}$, InCl$_3$ and LiEt$_3$BH at 70 ºC. More of the reduced $[(\text{Me}_3\text{Si})_2\text{N}]_2\text{AsH}$ species is observed after warming the solution to 70 ºC. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

2.3.4.2 Mechanistic investigations via quantum chemical modeling with DFT

The binding energies between two associating species shown in parenthesis are calculated using the counterpoise method to account for basis set superposition error. A “+” sign between two molecules signifies that the structures’ coordinates, total binding energy and vibrational zero-point energy were calculated separately. Note that some structures seem to appear twice (ex: 5 & 15, 18 & 23), whereas in reality one of the geometries is optimized in the presence of another coordinating species. All theoretical calculations were performed in vacuum.
Figure 17. Reduction of [(SiH$_3$)$_2$N]$_2$AsCl by LiMe$_3$BH. It is energetically downhill with a moderate barrier. However, this reaction is suppressed in the presence of indium trichloride, which is the preferred substrate for reduction. Note that structure (5) has been cropped for clarity. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

Figure 18. Reduction of InCl$_3$ by LiMe$_3$BH. Complexation and subsequent reduction of InCl$_3$ by LiMe$_3$BH is significantly downhill energetically with no reaction barrier. The resulting complex is moderately bound and likely dissociated before LiH·InCl$_3$ reduces the [(SiH$_3$)$_2$N]$_2$AsCl substrate as shown in Fig. 19. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 19. Reduction of $[\text{N(SiH}_3)_2\text{AsCl}]$ by LiH·InCl$_3$. It results in the formation of LiInCl$_4$. Given the low interaction energy of the reduced arsenic species with indium, the pair likely separates and further reactivity is dependent on the coordination of free InCl$_3$, which likely originates from the removal of LiCl from LiInCl$_4$. The complexation energy of LiInCl$_4$ with $[(\text{SiH}_3)_2\text{N}]\text{AsH}$ was determined to be positive (+0.11 kcal/mol) due to the zero-point energy correction. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

Figure 20. Loss of LiCl from LiInCl$_4$. The removal of LiCl from LiInCl$_4$ occurs with no apparent reaction barrier and is highly endothermic. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 21. Loss of HCl by InCl₃·[N(SiH₃)₂]₂AsH. The complexation of InCl₃ and hydrogen arsenic silylamide likely results in shedding of HCl, which is overall endothermic. Subsequent interaction with a borohydride reducing agent likely results in reduction of the indium moiety, which reacts with another chloroarsenic substrate. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

Figure 22. Loss of LiCl from LiInCl₄·[N(SiH₃)₂]₂AsH. The barrierless loss of LiCl from LiInCl₄ when complexed to reduced hydrogen arsenic silylamide is less endothermic by ~10 kcal/mol compared to LiInCl₄ alone, which is likely due to the energetic stabilization of the InCl₃ and [(SiH₃)₂N]₂AsH. We propose that structure (16) sheds HCl as shown in Fig. 20 as part of the reaction mechanism to form InAs nanoparticles. Overall, the lack of interaction of LiInCl₄ and [(SiH₃)₂N]₂AsH likely means that this mechanism does not occur. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 23. Loss of HCl and LiCl from LiInCl₄·[N(SiH₃)₂]₂AsH. As an alternative reaction pathway to that shown in Fig. 18, the loss of HCl originating from the LiInCl₄ - reduced hydrogen arsenic silylamide complex was investigated. The reaction barrier is nearly identical to the energetic cost of shedding LiCl from the same. Subsequent loss of LiCl is barrierless and endothermic. Regardless, the lack of interaction of LiInCl₄ and [(SiH₃)₂N]₂AsH likely means that this mechanism does not occur. The complexation of HCl with LiInCl₃·As[N(SiH₃)₂]₂ was calculated via E(AB) – E(A) – E(B) to be -5.19 kcal/mol as well as using the counterpoise method (-6.13 kcal/mol). Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Scheme 2. First steps in the reaction mechanism of InCl$_3$ and superhydride to form InAs quantum dots based on NMR and theoretical modeling results. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

Figure 24. Explaining the trend in indium precursor reactivity via binding energies. The reactivity of indium precursors followed the trend In[N(SiMe$_3$)$_2$]$_3$ < In(OAc)$_3$ < InCl$_3$. The reduced metal species interacting with the arsenic substrate were all modeled at the B3LYP/LANL2DZ level of theory to describe this behavior. BE refers to the BSSE corrected binding energy of the arsenic substrate with the reduced metal complex. It was universally found that there are two minima where the Li$^+$ and H$^-$ atoms are in a cis or trans position with respect to the metal center. Regardless of the structure, LiHInCl$_3$ has the overall strongest interactions with the arsenic substrate which may explain the lack of metal nanoparticles due to self-reactivity when using InCl$_3$ as a reagent. Note that (28) & (29) are not identical to (10) due to the nature of the local minima of (28) and the different level of theory employed in (29). Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
2.3.5 **Reaction mechanism for cadmium arsenide (Cd$_3$As$_2$) and enargite (Cu$_3$AsS$_4$)**

The reaction mechanism of formation of II-V and I-VI materials is very different than that observed for InAs. By examining the materials synthesized during the process of QD formation with XRD analysis, it was found that one type of nanomaterial initially forms which later converts into the product. In the case of Cd$_3$As$_2$, a portion of the solution was collected before heating to the final temperature, and was found to contain cadmium metal nanoparticles as evident from the XRD data shown in Fig. 25. In the case of enargite Cu$_3$AsS$_4$, it was found that CuI, arsenic silylamide, and the reducing agent form a mixture of copper and copper arsenide nanoparticles before injection of the sulfur precursor; see Fig. 26. Consequently, the synthesis likely proceeds either by a) diffusion of sulfur into Cu$_3$As or b) diffusion of As into Cu-S framework, which is commonly observed in ternary or quaternary nanoparticle synthesis.\(^{184-185}\)

Overall these results demonstrate that the reaction schemes reported here using [(Me$_3$Si)$_2$N]$_2$AsCl and a reducing agent are versatile and can be used to form nanoparticles via a variety of reaction pathways.

![XRD pattern of metallic Cd nanoparticles.](image)

Figure 25. XRD pattern of metallic Cd nanoparticles. X-ray diffraction patterns of materials synthesized from cadmium oleate and [(Me$_3$Si)$_2$N]$_2$AsCl precursor in presence of LiEt$_3$BH at 160 °C. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.
Figure 26. XRD pattern of Cu and Cu$_3$As nanoparticles. X-ray diffraction patterns of materials synthesized from CuI and [(Me$_3$Si)$_2$N]$_2$AsCl precursor in presence of LiEt$_3$BH at 260 °C reveals the formation of a mixture of copper metal and copper arsenide nanoparticles. Injection of the sulfur precursor results in the formation of Cu$_3$AsS$_4$ quantum dots as shown in Figs. 9 and 12. Reprinted with permission from Ref. 139. Copyright 2016 The American Chemical Society.

2.4 CONCLUSION

In this chapter, we have explored the use of bis[N,N-bis(trimethylsilyl)amido]chloroarsanic, [(Me$_3$Si)$_2$N]$_2$AsCl as an arsenic precursor to synthesize a variety of metal arsenide semiconductor nanomaterials within the III-V, II-V, I$_3$-V-VI$_4$ families. This precursor has minimal air sensitivity, low vapor pressure, and is significantly safer to handle. These advantageous features make arsenic silylamide a useful precursor compared to other commonly used reagents such as gaseous hydrides or pyrophoric tris(trimethylsilyl)arsenide. I applied this precursor to synthesize crystalline InAs, Cd$_3$As$_2$, and Cu$_3$AsS$_4$ nanomaterials. Furthermore, the syntheses of enargite Cu$_3$AsS$_4$ quantum dots, rods, and multipods are reported for the first time. In case of InAs, we also investigated the mechanism of synthesis using variable temperature NMR and DFT quantum chemical modeling. According to these studies, the activation of the As-Cl bond of arsenic silylamide occurs via hydride transfer from LiH·InCl$_3$, an intermediate that forms from the reduction of InCl$_3$ by a
reducing agent. The step is followed by LiCl loss to form InCl$_2$-AsH[(Me$_3$Si)$_2$N], which is reduced further in a cascade that ultimately creates InAs nanocrystals. However, we believe that the formation of Cd$_3$As$_2$ and Cu$_3$AsS$_4$ nanomaterials followed diffusion mechanisms.

![Figure 27. XRD pattern of gallium arsenide nanoparticles.](image)

Issues that need to be addressed concern the lack of colloidal stability of InAs and Cd$_3$As$_2$ particles prepared via the methods outlined here, which we believe is due to the low temperature employed in the early stages of the reaction. We attempted to broaden the scope of this precursor towards the synthesis of other arsenide nanomaterials, especially GaAs. We synthesized GaAs nanomaterials following similar protocol, but the results were not reproducible which restricted further investigation. To summarize, the use of arsenic silylamide addresses the difficulty with solution-based synthesis of these nanomaterials which could extend the scope of possible applications.
3 Synthesis of High-Quality AgSbSe$_2$ and AgBiSe$_2$ Nanocrystals with Antimony and Bismuth Silylamide Reagents

The content of this chapter has been published as “Synthesis of High-Quality AgSbSe$_2$ and AgBiSe$_2$ Nanocrystals with Antimony and Bismuth Silylamide Reagents”, Adita Das†, Bo Hsu‡, Armen Shamirian†, Zheng Yang‡, Preston T. Snee†* Chemistry of Materials, 2017, DOI: 10.1021/acs.chemmater.7b01593 (just accepted). Adapted with permission from Ref.213. Copyright 2017 The American Chemical Society.

3.1 INTRODUCTION

This chapter discusses the development of pnictide reagents to synthesize low bandgap semiconductor quantum dots (QDs). This is important as the use of advanced semiconductor materials may help to address the problems associated with the non-sustainable consumption of environmental resources due to world-wide overpopulation. In this regard, semiconductors can be used to create solar panels and catalysts for alternative energy generation, as well as efficient lighting systems and “smart windows” for energy conservation.$^{186-187}$ Furthermore, semiconductor thermoelectric materials can generate power from the excess heat that is the byproduct of processes such as fossil fuel combustion.188 Many of these examples were not realized with bulk materials that have well-defined physical properties. Such limitations engender only a certain level of efficacy for use in applications. It is necessary to build advanced materials on the nanoscale to overcome this deficit, due to the ability to tune electronic properties with size.3 Bottom-up chemical syntheses have been used to create colloidal semiconductor nanocrystals that have size dependent properties engendered through quantum confinement.$^3, 189$ This thesis covers my research on pnictides that have not been extremely explored, such as II-V, I-V-VI$_2$, I$_3$-V-VI$_4$ families. This is due to the fact that the syntheses of these systems require pnictide nanomaterials are intricate and dangerous and there are few low-cost commercially available non-pyrophoric precursors.$^{121, 133, 139, 162}$
Among pnictides, environmentally benign I-V-VI$_2$ semiconductor nanocrystals are an emerging class of materials due to their NIR band gaps, large absorption coefficients, and excellent electronic properties.190-191 Dimetal chalcogenides have utility for photovoltaic and thermoelectric applications, making them promising alternatives for thermoelectric PbTe.120, 192 There are several examples of the synthesis of copper-based I-V-VI$_2$ quantum dots, whereas silver-based nanomaterials such as AgBiS$_2$, AgSbS$_2$, AgSbSe$_2$ and AgBiSe$_2$ are less common.112, 193-194 The majority of reports on their syntheses used high temperature (~1000 K) solid state reactions that required long annealing times. Furthermore, the products were reported to have poor crystallinity and significant poly-dispersity. Colloidal preparation of AgSbSe$_2$ has been reported to yield significantly more monodisperse materials.195

Chapter 2 of this thesis discussed the use of an efficient, versatile, and most importantly non-pyrophoric arsenic pre-cursor, [(N(SiMe$_3$)$_2$)$_2$AsCl, to synthesize a variety of semiconductor quantum dots and rods.9 Herein we report the utility of additional silylamide-ligated pnictides, specifically tris[N,N-bis(trimethylsilyl)amido]antimony (Sb[(N(SiMe$_3$)$_2$)$_3$]) and tris[N,N-bis(trimethylsilyl)amido]bismuth (Bi[(N(SiMe$_3$)$_2$)$_3$]),162, 196 to synthesize silver dimetal chalcogenide quantum-confined nanocrystals. These reagents were prepared via a simple one step metathesis reaction between the pnictide halide (SbCl$_3$/BiCl$_3$) and Li[(N(SiMe$_2$)$_2$)$_3$] as summarized in Scheme 1. Both compounds are stable and relatively easy to handle due to the fact that they are solid-state reagents. Furthermore, they are soluble in a variety of organic solvents. As a result, they have been successfully applied to the syntheses of monodisperse, crystalline AgSbSe$_2$ and AgBiSe$_2$ nanoparticles using high-temperature colloidal methods. Specifically, AgSbSe$_2$ nanoparticles were generated via hot injection method, while the optimal strategy for synthesizing AgBiSe$_2$ NCs used a ‘heat-up’ procedure. These processes are represented in Scheme 2.
Scheme 1. Synthesis of tris[N,N-bis(trimethylsilyl)amido]antimony, Sb[(N(SiMe$_3$)$_2$)$_3$] and tris[N,N-bis(trimethylsilyl)amido]bismuth, Bi[(N(SiMe$_3$)$_2$)$_3$]. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.

Scheme 2. (a) Synthesis of AgSbSe$_2$ NCs begins with solvent degassing. (b) Ag and Sb reagents are prepared separately. (c) Rapid injection of Sb and Ag precursors. (d) AgBiSe$_2$ NCs are prepared by heating up the solvent and precursors in a single reaction vessel. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
3.2 EXPERIMENTAL

3.2.1 Materials

Bismuth chloride (BiCl$_3$, 99.9%) and selenium shot (99.5%) were purchased from Strem Chemicals. Hexane (anhydrous, 95%) and antimony chloride (SbCl$_3$, 99%) were purchased from Alfa Aesar. Oleic acid (OA, 90%), oleylamine (OLA, 98%), lithium bis(trimethylsilyl)amide (Li[N(Si(Me)$_3$)$_2$], 97%), 1-dodecanethiol (DDT, 98%), ethanol (>99.5%), silver(I) chloride (AgCl, 99.995%) and sodamide (NaNH$_2$, 95%) were obtained from Sigma-Aldrich. Diethyl ether (purchased from VWR) was sparged with argon and dried using a Glass Contour Solvent System from Pure Process Technology, LLC. Antimony chloride, bismuth chloride, lithium bis(trimethylsilyl)amide (LHMDS) were stored and handled in an inert atmosphere glove box. Oleic acid was recrystallized according to the procedures in ref. 58, while other chemicals were used without further purification.

3.2.2 Synthesis of tris[N,N-bis(trimethylsilyl)amido]antimony, Sb][N(SiMe$_3$)$_2$]$_3$

The procedure developed by Liu et al.162 was used to synthesize tris[N,N-bis(trimethylsilyl)amido]antimony. The preparation is based on a metathesis reaction between antimony chloride and lithium bis(trimethylsilyl)amide. First, 760 mg SbCl$_3$ (3.33 mmol) was dissolved in a mixture of dry ether (15 mL) and THF (3 mL) and was slowly added dropwise to a stirring solution of 1.7 g lithium bis(trimethylsilyl)amide (10 mmol) in ether (10 mL) at 0 °C under an inert N$_2$ atmosphere. The solution became white in color and turbid during the addition, and was kept stirring at 0 °C for an additional hour. The resulting white solution was warmed to room temperature and kept overnight. Afterwards, the solution was filtered using a glass fritted funnel.
and the solvents were removed under reduced pressure, resulting in a pale yellow colored Sb\([(N(SiMe_3)_2)]_3\) product. The product was recrystallized from a saturated hexane solution, resulting in the white solid product Sb\([(N(SiMe_3)_2)]_3\), yield ~ 80%. The purity of the product was determined via NMR; \(^1\)H NMR (25 °C, CDCl\(_3\), 400MHz) 0.29 (s); see the spectrum in Fig. 1. The reagent was stored in a -80 °C freezer in a sealed vial.

3.2.3 Synthesis of tris[N,N-bis(trimethylsilyl)amido]bismuth, Bi[(N(SiMe_3)_2)_3]

The procedure developed by Carmalt et al.\(^{196}\) was used to synthesize tris[bis(trimethylsilyl)amide]bismuth. The preparation is based on a metathesis reaction between bismuth chloride and lithium bis(trimethylsilyl)amide. First, 1.0 g BiCl\(_3\) (3.17 mmol) was added into a round bottom flask under a dry nitrogen atmosphere. Next, 20 mL of dry ether and 5 mL THF were added to the flask, which was maintained the temperature at 0°C. Next, 1.6 g lithium bis(trimethylsilyl)amide (9.51 mmol) dissolved in 15 mL of dry ether was added dropwise into the BiCl\(_3\) solution. The resulting mixture became yellow in color and turbid. It was kept stirring at 0 °C for another hour and then slowly warmed to room temperature. Afterwards, the solution was filtered through a glass fritted funnel under an inert N\(_2\) atmosphere and the solvents were removed under reduced pressure. Finally, the product was recrystallized from a saturated toluene solution, resulting in a yellow solid Bi\[N(SiMe_3)_2\] product, yield ~ 90%. The purity of the product was determined via NMR; \(^1\)H NMR (25 °C, toluene-d\(_8\), 400MHz) 0.36 (s); see the spectrum in Fig. 1. The reagent was stored in glove box under inert atmosphere covered with aluminum foil.
3.2.4 Synthesis of AgSbSe₂ nanoparticles

First, 10 mL of oleylamine was added into a three neck round-bottom flask and degassed under vacuum at 110 °C for 2 hours. In a 7 mL septa-covered vial labeled “A”, 5 mL of oleylamine and 1 mL of oleic acid were added and were subsequently degassed under vacuum. Next, 85 mg (0.5 mmol) of AgNO₃ was added to this vial, which was kept stirring at 80 °C under an N₂ atmosphere until the solid dissolved completely. Next, the vial was cooled to 40 °C, and 300 mg (0.5 mmol) of Sb[(N(SiMe₃)₂]₃ dissolved in 0.5 mL toluene was added while maintaining the nitrogen atmosphere. In a separate vial labeled “B”, 98 mg of selenium (1.25 mmol) was dissolved in a mixture of 0.5 mL oleylamine and 0.5 mL dodecanethiol. Afterward, the oleylamine in the three neck round bottomed flask was heated to 180°C. The solution in vial “A” was injected into the flask at 180 °C followed by an injection of the solution in vial “B”. This resulted in the formation of a dark brown coloration. The solution was maintained at 180 °C for 2-3 mins. Afterwards, the heating mantle was removed and the solution was allowed to cool to room temperature. The sample was stored under an inert N₂ atmosphere in a glovebox.
3.2.5 Synthesis of AgSbSe$_2$ nanoparticles in presence of a reducing agent

First, 10 mL of oleylamine and 85 mg (0.5 mmol) of AgNO$_3$ were added into a three-neck round bottom flask and degassed at 110 °C for 2 hours. At the same time, 300 mg (0.5 mmol) of Sb[(N(SiMe$_3$)$_2$)$_3$] was dissolved in 0.5 mL toluene and 98 mg of selenium (1.25 mmol) was dissolved in a mixture of 0.5 mL oleylamine and 0.5 mL dodecanethiol. The oleylamine in three-neck round bottom flask was cooled to 30°C and 0.9 mL of 1(M) lithium triethylborohydride (0.9 mmol) and Sb[(N(SiMe$_3$)$_2$)$_3$] solution in toluene was injected into the flask at 30 °C followed by an addition of the solution of selenium precursor. This resulted in the formation of a black colored suspension, which was then slowly heated to 180°C and maintained at 180 °C for another 10 mins. Afterwards, the heating mantle was removed and the solution was quickly allowed to cool to room temperature. The sample was stored under an inert atmosphere in a glovebox. A similar procedure was employed to synthesize AgBiSe$_2$ NCs, however the poor size distribution of AgSbSe$_2$ nanoparticles obtained using this procedure caused us to abandon the use of reducing agents.

3.2.6 Synthesis of AgBiSe$_2$ nanoparticles

First, 10 mL of oleylamine and 85 mg (0.5 mmol) of AgNO$_3$ were added into a three-neck round bottom flask and degassed at 110 °C for 2 hours. At the same time, 345 mg (0.5 mmol) of Bi[(N(SiMe$_3$)$_2$)$_3$] was dissolved in 0.5 mL toluene and 98 mg of selenium (1.25 mmol) was dissolved in a mixture of 0.5 mL oleylamine and 0.5 mL dodecanethiol. Afterward, the oleylamine in three-neck round bottomed flask was cooled to 30°C and the Bi[(N(SiMe$_3$)$_2$)$_3$] solution was injected into the flask at 30 °C followed by the selenium precursor solution. This resulted in the formation of a black colored suspension. The solution was slowly heated to 200°C and maintained
at 200 °C for an additional 10 mins. Afterwards, the heating mantle was removed and the solution was allowed to cool to room temperature. The sample was stored under an inert N\textsubscript{2} atmosphere in a glovebox.

3.2.7 Surface ligand treatment and pellet formation

The following procedure was applied to both AgSbSe\textsubscript{2} and AgBiSe\textsubscript{2} samples in an identical manner. First, 800 mg of a sample was precipitated with an ethanol / isopropanol mixture and centrifuged. Next, the material was dispersed into 10 mL chloroform to which 10 mL of 0.01 M sodamide (NaNH\textsubscript{2}) solution in ethanol was subsequently added. Afterwards, the sample was repeatedly washed with isopropanol and chloroform. Finally, a fine powder of nanocrystals was obtained after drying under vacuum. After ligand treatment, 500 mg of each fine powder were pressed into form a pellet under an applied pressure of 7.4 metric tons (~ 16000 lbs.).

![Figure 2](image.png)

Figure 2: Step by step processing of QDs solution into nanopellets. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
3.2.8 Characterization

For characterization, a small quantity of each sample was precipitated with ethanol and centrifuged to remove impurities. The precipitate was then redispersed in dry hexane and characterized by optical, X-ray photoelectron (XPS), and X-ray diffraction (XRD) spectroscopies. Absorption measurements were performed with a Perkin Elmer LAMBDA 1050 UV/Vis-NIR spectrophotometer. XPS analyses were performed on a Kratos Axis 165 using a monochromatic Al Kα source operating at 12 kV and 10 mA to produce an X-ray power of 120 W. Spectra were collected with a photoelectron takeoff angle of 90° from the sample surface plane, in energy steps of 0.1 eV, and a pass energy of 20 eV for all elements. All spectra were referenced to the C1s binding energy (284.8 eV). X-ray diffraction studies were performed on a D8 Advance ECO Bruker XRD diffractometer using monochromatized Cu Kα (λ= 1.54056 Å) radiation. Transmission electron microscopy (TEM) measurements were performed using a JEOL JEM-3010 operating at 300 keV. A 300 mesh gold grid was used for TEM analysis. 1H NMR spectra were recorded using Bruker Avance DRX 400 NMR spectrometer.

3.2.9 Electrical measurement

Electrical measurement [current-voltage (I-V) characteristics] of the AgSbSe₂ and AgBiSe₂ quantum dot pellets were measured using a Keithley 2400 source meter at room temperature. Copper wires were soldered using indium on various locations of AgSbSe₂ and AgBiSe₂ quantum dot pellets as electrode contacts for I-V measurements. Fig. 12 shows the two-terminal I-V characteristics of the AgSbSe₂ and AgBiSe₂ pellets. All the I-V measurements show linear behavior, from which the resistance values are extracted from a linear fit. The resistance values of
the AgSbSe$_2$ sample shown in Fig. 12 are 74 Ω (red), 96 Ω (blue), 123 Ω (green) between contacts 1 and 2, contacts 2 and 3, and contacts 1 and 3, respectively. The resistance values of the AgBiSe$_2$ sample shown in Fig. 12 are 23 kΩ (blue), 28 kΩ (red), 25 kΩ (green) between contacts 1 and 2, contacts 2 and 3, and contacts 1 and 3, respectively. The I-V curves of AgBiSe$_2$ are slightly removed from the origin; however, this is within the precision of the source meter over the scan range employed for this sample.

3.3 RESULTS AND DISCUSSION

As part of my research into the development of pnictide quantum dot chemistry, I have developed two pnictide precursors, tris[N,N-bis(trimethylsilyl)amido]antimony, [(Me$_3$Si)$_2$N]$_3$Sb and tris[N,N-bis(trimethylsilyl)amido]bismuth, [(Me$_3$Si)$_2$N]$_3$Bi to synthesize crystalline AgSbSe$_2$ and AgBiSe$_2$ nanoparticles. Discussed below are the results from each individual system, followed by electrical measurement data on monolithic pellets of the materials.

3.3.1 Silver antimony selenide (AgSbSe$_2$)

AgSbSe$_2$ is a narrow indirect bandgap (0.58 eV) semiconductor with intrinsic p-type conductivity. It is a promising candidate for thermoelectric applications due to its high Seebeck coefficient, low thermal conductivity and good stability.$^{197-200}$ Furthermore, it is considered to be an excellent photovoltaic material due to its strong absorption.$^{199-201}$

The synthesis of AgSbSe$_2$ NCs was studied via the hot injection method. To this end, two separate solutions of precursors were co-injected into oleylamine at 180$^\circ$C. One contained the
antimony and AgNO₃ reagents dissolved in an oleylamine and oleic acid mixture. This was done to enhance the crystallinity of the AgSbSe₂ nanoparticle products under the rational that oleic acid stabilizes the hard Sb (+3) ions while oleylamine stabilizes the soft Ag (+1) ions. The sequence of addition of precursors during the preparation of the antimony and silver injection solution as detailed in the experimental section is important as the product does not have a pure crystallinity if the protocol is not followed exactly. The second solution that was co-injected contained selenium dissolved in oleylamine and dodecanethiol.

\[
\text{AgNO}_3 + \text{Sb[N(SiMe}_3)_2]_3 + \text{Se (oleylamine / 1-dodecanethiol)} \rightarrow \text{AgSbSe}_2
\]

A variety of characterization results are shown in Fig. 3, all of which demonstrate the synthesis of ~9 nm crystalline nanoparticles of AgSbSe₂. XPS results shown in Fig. 4 confirm the stoichiometry of the products. The crystal phase of the nanoparticles is consistent with characteristic pattern of the cubic phase of AgSbSe₂. The absorption spectrum in Fig. 4 is featureless; however, the absorption onset (~1300 nm) is greater than the bulk bandgap. This is potentially due to quantum confinement, which affords the possibility for manipulation of the properties of artificial solids that incorporate these materials. The most interesting discovery concerns the fact that no reducing agents were required to activate either Sb[(N(SiMe₃)₂]₃ nor Bi[(N(SiMe₃)₂]₃ as was necessary for the synthesis of arsenic nanomaterials in our earlier study. In fact, inclusion of a reducing agent resulted in a bivariate distribution of nanoparticle sizes as discussed later, see Fig. 5.

There are important differences to note between the results of this study and previous demonstrations of AgSbSe₂ materials synthesis. For example, the preparation of nanocrystalline silver antimony dichalcogenide using solid state conditions results in polydisperse samples. As such, colloidal methods are preferred, and indeed Lin et al. first demonstrated homogeneous 7-17
nm AgSbSe₂ NCs via the rapid injection procedure using SbCl₃ as the pnictide source. The use of Sb[(N(SiMe₃)₂)₃ as presented in this report created a similar small size of NCs; however, our protocol requires ~1/10th the quantity of precursors. Furthermore, the use of SbCl₃ results in an initial bimodal size distribution that grew into a monodisperse population over 30 min. In contrast, we observed a reasonably monodisperse AgSbSe₂ NC population within 3 minutes of injection, which indicates homogeneous nucleation and growth. Consequently, there is considerable value in the use of Sb[(N(SiMe₃)₂)₃ vs the dichloride as a precursor for nanomaterials.

Figure 3. (a) TEM image of AgSbSe₂ nanoparticles. (b) X-ray diffraction pattern of AgSbSe₂ NCs confirm their structure and crystallinity. (c) High resolution TEM image of crystalline AgSbSe₂ showing lattice fringes. (d) Size distribution of AgSbSe₂ dots. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
Figure 4. UV/Vis and X-ray photoelectron spectra of AgSbSe$_2$ NCs. a) XPS survey spectra of AgSbSe$_2$ quantum dots. b) UV/Vis spectra of AgSbSe$_2$ quantum dots. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.

Figure 5. TEM micrographs of polydisperse AgSbSe$_2$ nanocrystals prepared with the use of a reducing agent. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
Figure 6. TEM micrographs of AgSbSe₂ nanocrystals. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
3.3.2 Silver bismuth selenide (AgBiSe₂)

AgBiSe₂ is another interesting member of the I-V-VI₂ semiconductor family that has excellent thermoelectric properties. At room temperature, it is p-type with a hexagonal phase, and can undergo a structural transition to cubic via a rhombohedral intermediate phase. Both the hexagonal and rhombohedral materials are narrow band gap (~ 0.6 eV) semiconductors, while the high temperature cubic phase behaves like a metal with a high electrical conductivity yet a low thermal conductivity. At present, there is only one other example of the colloidal synthesis of silver bismuth selenide. This rapid injection process required long annealing times that yielded anisotropic nanoparticles, while our heat-up protocol using Bi[(N(SiMe₃)₂]₃ generated more homogeneous and spherical nanocrystals within ~10 min.

\[
\text{AgNO}_3 + \text{Bi[N(SiMe}_3 \text{)₂]}_3 + \text{Se (oleylamine / 1-dodecanethiol)} \rightarrow \text{AgBiSe}_2
\]

We have synthesized AgBiSe₂ NCs at 200°C using Bi[(N(SiMe₃)₂]₃, AgNO₃, and selenium in an oleylamine solution. In contrast to the antimonide system, the rapid injection of precursors resulted in materials with broad and unidentifiable XRD patterns. This prompted the use of a heat-up procedure, which produces significantly cleaner results as shown in Fig. 7. The results are consistent with the synthesis of small, ~6 nm diameter crystalline dots, albeit the materials are less monodisperse compared to AgSbSe₂ NCs; Fig. 7a, 7c, 9. The crystal phase of the nanoparticles was confirmed by powder XRD and is consistent with characteristic pattern of the complex hexagonal phase of AgBiSe₂. XPS result also confirms the composition of AgBiSe₂ nanoparticles although there exists a slight excess of selenium; see Fig. 8. As was observed in the antimonide materials, the absorption spectrum shown in Fig. 8 is featureless and has a higher energy onset (~ 1200 nm) compared to the bandgap, which is indicative of quantum confinement effects.
Figure 7. (a) TEM image of AgBiSe$_2$ nanoparticles. (b) X-ray diffraction pattern of AgBiSe$_2$ nanoparticles. (c) High resolution TEM image of crystalline AgBiSe$_2$ showing lattice fringes. (d) Size distribution of AgBiSe$_2$ dots. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.

Figure 8. UV/Vis and X-ray photoelectron spectra of AgBiSe$_2$ NCs. a) XPS survey spectra of AgBiSe$_2$ quantum dots. b) UV/Vis spectrum of AgBiSe$_2$ quantum dots. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
Figure 9. TEM micrographs of various AgBiSe$_2$ nanocrystals. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
3.3.3 Electrical measurements

Room temperature current-voltage (I-V) behavior was measured to characterize the electrical conductivity of silver dimetal chalcogenide artificial solids. The materials were precipitated and processed by washing with a sodamide solution. FTIR spectroscopy confirm the removal of the original ligands as shown in Fig. 10. The resulting AgSbSe$_2$ and AgSbSe$_2$ nanoparticle powders were transformed into 13 mm × 0.9 mm thick pellets in a press. Copper wires were soldered to the surface using indium as electrode contacts as seen in Fig. 11 inset. Also shown are the room temperature two-terminal I-V plots of the AgSbSe$_2$ and AgBiSe$_2$ quantum dot monoliths.

All the I-V measurements demonstrate linear resistive behavior, indicating Ohmic contact nature of the soldered electrodes. Three contact points were used to verify the proper resistance vs. electrode distance behavior as well as confirm good uniformity of the nanomaterials throughout the pellet, see Fig. 12. Overall, the conductivity is significantly smaller than bulk materials; furthermore, the bismuth NCs are much lower than the antimony materials despite their similar bulk transport properties.112 This is likely due to both the smaller size and higher polydispersity of the AgBiSe$_2$ sample, as these factors increase the resistance in solid monoliths of semiconductor nanocrystals.204 The conductivity of the AgSbSe$_2$ NCs using the method of Lin et al. was reported to be significantly higher than observed here,195 which may be due to the fact that we did not attempt to thermally anneal the NC pellets. As a result, a massive number of grain boundaries may have developed inside the pellet that ultimately increased the resistance of these pellets.
Figure 10. FT-IR spectra of oleic acid, oleylamine, 1-dodecanethiol, AgSbSe$_2$, and AgBiSe$_2$ nanocrystals after surface treatment of the particles. Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.

Figure 11. I-V measurement of AgBiSe$_2$ and AgSbSe$_2$ monolithic NC pellets (inset). Reprinted with permission from Ref. 213. Copyright 2017 The American Chemical Society.
3.4 CONCLUSION

Silver dimetal chalcogenides (Ag-V-VI$_2$) are ternary semiconductors that have potential alternative energy applications due to their optimal band gaps and large extinction coefficients. The syntheses of these materials are challenging due to the lack of effective pnictide precursors. In this chapter, tris[N,N-bis(trimethylsilyl)amido]antimony, [(Me$_3$Si)$_2$N]$_3$Sb and tris[N,N-bis(trimethylsilyl)amido]bismuth, [(Me$_3$Si)$_2$N]$_3$Bi have been successfully applied to synthesize monodisperse, crystalline AgSbSe$_2$ and AgBiSe$_2$ nanoparticles. The rapid injection procedure was employed for AgSbSe$_2$ nanoparticles, whereas heat-up process was followed to produce AgBiSe$_2$ nanocrystals. The most interesting discovery involves the fact that no reducing agents were required to activate either Sb[(N(SiMe$_3$)$_2$)$_3$] nor Bi[(N(SiMe$_3$)$_2$)$_3$]. The primary goal of using reducing agent is to activate pnictide-N bond which was necessary for the synthesis of arsenic nanomaterials as discussed in chapter 2. For bismuth and antimony, inclusion of a reducing agent resulted in a bivariate distribution of nanoparticle sizes due to separate nucleation events.
However, the presence of Ag metal helps to activate pnictide-N bond here and it results in the synthesis of better materials with enhanced monodispersity and crystallinity.

Furthermore, electrical measurements on monolithic pellets of processed AgSbSe$_2$ and AgBiSe$_2$ nanomaterials demonstrate linear current-voltage behavior at room temperature, indicating Ohmic contact formation which enhances utility for electronic device applications. These results reveal several paradigms concerning pnictide chemistry as it applies to the synthesis of nanomaterials.
4 Hydrophilic Phosphonic Acid Ligands to Water Solubilize Quantum Dots

4.1 INTRODUCTION

As discussed in chapter 1, colloidal semiconductor quantum dots are excellent candidates for numerous applications, primarily for fluorescence-based biological sensing and imaging due to their unique photophysical properties.9-10, 87, 104 Quantum dots are significantly resistant towards photobleaching compared to organic dyes, have tunable and narrow emission profiles, and are strongly absorptive at energies higher than their characteristic bandgaps.26-27, 74 However, the best method to synthesize bright quantum dots involve hydrophobic ligands that enables colloidal dissolution of QDs in nonpolar solvent.47 However, water solubility is a necessary property for biological experiments.61-62 Thus, quantum dots must be processed to render them from organic phase to the aqueous phase, which remains a challenging chemical modification still today. So far, researchers have employed two primary protocols for water solubilization of QDs: 1) encapsulation, and 2) ligand exchange. To our knowledge, amphiphilic carboxylic acid polymers are commonly used ligands in the encapsulation method.75, 78-80 This protocol creates stable QDs aqueous dispersions with minimal loss in quantum yield; however, the hydrodynamic diameter of encapsulated quantum dots is very large which makes them incompatible for biological applications. Researchers have observed the difficulty with cytocellular staining of living cells and nonspecific adsorption onto the cell walls of QDs.82 Also, there are no instances of renal excretion of such large quantum dots in animal studies.65 To avoid these problems, researchers developed the ligand exchange protocol, which functions via the removal of native hydrophobic ligands with hydrophilic ones for water solubilization of quantum dots. Thiol functionalized cysteine, dihydrolipoic acid (DHLA) or poly(ethylene glycol)-modified DHLA are ubiquitous in the ligand
The ligand exchange protocol resolves many problems associated with encapsulation. For example, after processing, ligand-exchanged quantum dots are smaller and thus more biologically compatible. However, the ligand exchange process results in significant loss of quantum yield and reduced stability due to thiol oxidation which restricts its application in biological sensing.

Recently our group has demonstrated a method of ligand exchange by replacing the hydrophobic phosphonic acids on CdSe/ZnS QDs with thiol-functional ligands bound to Zn metal center. It imparts greater stability and minimal loss of quantum yield. Further research on this topic led our group to discover another simple way to water-solubilize QDs with a near monolayer of silane. The procedure is less time consuming compared to SiO$_2$-encapsulating methods and yields highly stable, brighter water soluble quantum dots. However, there is so far no examples in literature where hydrophilic quantum dots are synthesized in one step that imparts comparable brightness and stability with QDs synthesized via high temperature rapid injection method. This is because long chain alkyl phosphonic acids are the best known ligands to synthesize high quality CdSe QDs in hydrophobic solvents due to favorable interaction of phosphonic acids with Cd (+2) on the surface. This interaction improves the monodispersity and passivates the surface defects of cadmium selenide quantum dots, which results in higher quality materials. Based on this paradigm, we designed a series of hydrophilic ligands with a phosphonic acid group at one end. A library of ligands is shown in scheme 1 that we have employed a variety of strategies to incorporate these ligands on top of CdSe quantum dots, including: 1) synthesis of QDs in polar solvents (DMF and water), 2) synthesis of QDs in hydrophobic solvents, and 3) ligand exchange via hydrophilic phosphonic acid ligands. However, none of these methods resulted in stable colloidal dispersions of QDs as discussed in the following sections.
4.2 EXPERIMENTAL

4.2.1 Materials

All chemicals were used as received unless noted. Phosphorous tribromide (99%) was purchased from Alfa Aesar. Methoxy poly(ethylene glycol, Mₙ~350), methoxy poly(ethylene glycol, Mₙ~750) were bought from Fluka. N-(3-bromopropyl)phthalimide (98%) and N-(8-bromooctyl)phthalimide (98%) were bought from Oakwood Chemicals. Technical grade 1-octadecene (90%), bis-trimethylsilyl sulfide (purum, >98%), cadmium acetate dihydrate (98%), sodium borohydride (99%), cadmium oxide (99.99%), pyridine (anhydrous, 99.8%), carbon tetrachloride (99%), triethylphosphite (98%), oleic acid (OA, 90%), bromotrimethylsilane (98%),
hydrazine monohydrate (98%), phthalimide potassium salt (98%), cadmium chloride (99%), sodium hydroxide (97%), and 3-phosphonopropionic acid (98%), propylene oxide (99%), 1,8-dibromooctane (98%) were purchased from Sigma-Aldrich. Diethylzinc (95%) and trioctylphosphine (99%) was purchased from Strem. Diethyl ether (purchased from VWR) was sparged with argon and dried using a Glass Contour Solvent System from Pure Process Technology, LLC. Phosphorous tribromide, bromotrimethylsilane, triethyl phosphite, diethylzinc, trioctyl phosphine, bis(trimethylsilyl) sulfide were stored and handled in an inert atmosphere glove box. Oleic acid was recrystallized according to the procedures in ref. 58, while other chemicals were used without further purification.

4.2.2 Synthesis of methoxy poly(ethylene glycol, M_n~350)-bromide, mPEG350-Br

![Scheme 2. Schematic diagram of the synthesis of mPEG350-bromide from mPEG350](image)

First, 0.4 mL of pyridine was slowly added to 2.00 g (5.7 mmol) of mPEG350 (1) in a round bottom flask at 0°C under a nitrogen atmosphere. Afterwards, 1.00 g of PBr₃ (3.8 mmol) was added dropwise to this mixture which was stirred at room temperature for 16 hours. Next, 10 mL of distilled water was added and the mixture was extracted 3x with CCl₄. The combined organic extracts were washed thoroughly with 10 mL of 10% NaCO₃, 5% H₂SO₄, distilled water and was further dried over anhydrous Na₂SO₄. The solvent was removed via rotary evaporation. The crude
product was chromatographed on silica gel with CHCl₃: MeOH (10:1) as the mobile phase. A colorless viscous oil (2) was obtained. Yield: 50%; ¹H NMR (25°C, CDCl₃, 400MHz): 3.36 (s, -O-CH₃), 3.62 (m, -(CH₂CH₂O))ₙ⁻), 3.79 (t, CH₃O-CH₂CH₂⁻).

Figure 1. ¹H NMR of methoxy poly(ethylene glycol, Mₙ~350)-bromide, mPEG350-Br.

4.2.3 Synthesis of methoxy poly(ethylene glycol, Mₙ~750)-bromide, mPEG750-Br

Scheme 3. Schematic diagram of the synthesis of mPEG750-bromide from mPEG750.

mPEG750-bromide (5) was synthesized in a similar way as mPEG350-bromide. First, 0.4 mL of pyridine was slowly added to 4.00 g (5.3 mmol) of mPEG750 (5) in a round bottom flask
at 0°C under a nitrogen atmosphere. Afterwards, 1.00 g of PBr$_3$ (3.8 mmol) was added dropwise to this mixture and the resulting mixture were stirred at room temperature for next 16 hours. Next, 20 mL of distilled water was added and the mixture was extracted 3x with CCl$_4$. The combined organic extracts were rinsed successively with 20 mL of 10% NaCO$_3$, 5% H$_2$SO$_4$ and distilled water. It was further dried over anhydrous Na$_2$SO$_4$ and the solvent was removed via rotary evaporation. The crude product was chromatographed on silica gel with a CHCl$_3$: MeOH (15:1) mobile phase, resulting in a colorless, viscous oil. Yield: 40%; 1H NMR (25°C, CDCl$_3$, 400MHz): 3.28 (s, -O-CH$_3$), 3.55 (m, -(CH$_2$CH$_2$O))$_m$-).

![Figure 2. 1H NMR of methoxy poly(ethylene glycol, M$_n$$\sim$750)-bromide, mPEG750-Br.](image)
4.2.4 Synthesis of methoxy poly(ethylene glycol, $M_n \approx 350,750$)-diethylphosphonate:

mPEG($M_n \approx 350,750$)-PO(OEt)$_2$

Excess triethyl phosphite (1.7 mL, 9.3 mmol) was added to 1.00 g (2.32 mmol) of mPEG350-bromide (2) in a round bottom flask. The mixture was refluxed at 156°C for 24 hours. Afterwards, the excess triethyl phosphite was removed via reduced pressure distillation and a viscous, colorless liquid remained. Yield: 80%; 31P: 26.97(s); 1H NMR (25°C, CDCl$_3$, 400MHz):1.21(t, -P(O)(OCH$_2$CH$_3$)), 3.26 (s, -O-CH$_3$), 3.62 (m, -(CH$_2$CH$_2$O)$_n$-), 3.99 (q, -P(O)(OCH$_2$CH$_3$)).

Similar procedure was followed to synthesize mPEG750-diethylphosphonate. Yield: 70% and Fig. 4 refers to 1H NMR (400MHz) of mPEG750-diethylphosphonate. 1H NMR (25°C, CDCl$_3$, 400MHz):1.18 (t, -P(O)(OCH$_2$CH$_3$)), 3.23 (s, -O-CH$_3$), 3.50 (m, -(CH$_2$CH$_2$O)$_m$-), 3.96 (q, -P(O)(OCH$_2$CH$_3$)); 31P: 26.91(s);
Figure 3. 1H and 31P NMR of methoxy poly(ethylene glycol, $M_n \sim 350$)-diethylphosphonate, mPEG350-PO(OEt)$_2$.

Figure 4. 1H and 31P (box) of NMR of mPEG750-diethylphosphonate.
4.2.5 Synthesis of methoxy poly(ethylene glycol, Mₙ~350)-phosphonic acid, mPEG350-PO(OH)₂

Scheme 5. Schematic diagram of the synthesis of mPEG350-phosphonic acid from mPEG350-diethylphosphonate.

First, 500 mg (1.0 mmol) of mPEG-350 diethyl phosphonate (3) was dissolved in 20 mL of dry dichloromethane and 628 mg (4.0 mmol) of trimethylsilyl bromide was slowly added to it under an inert atmosphere. The solution was kept stirring for another 2 hours at room temperature. Next, the solvent was removed under vacuum resulting in a brown oil. This oil was dissolved in 20 mL of acetone and 0.5 mL of water and was kept stirring for half an hour to dissociate excess trimethylsilyl bromide. The solvent was removed under reduced pressure to leave a light yellow-colored oil. The oil was characterized via 1H and 31P NMR. However, more than one product results from this protocol which leads me to conclude that this procedure is unsuccessful concerning the synthesis of mPEG350-phosphonic acid. 31P NMR (CDCl₃, 400MHz): multiple peaks between -28.98 and -27.94.
Figure 5. 31P NMR of the product(s) of the reaction between mPEG350-PO(OEt)$_2$ and bromotrimethylsilane.

4.2.6 Synthesis of 3-aminopropylphosphonic acid, H$_2$N-(CH$_2$)$_3$-PO(OH)$_2$

Scheme 6. Schematic diagram of the synthesis of 3-aminopropylphosphonic acid from N-(3-bromopropyl)phthalimide.
First, 3-aminopropylphosphonic acid was synthesized in three step reaction following the method of Schmidt et. al. An excess of triethyl phosphite (13 mL, 74 mmol) was added to 5.00 g (19 mmol) of N-(3-bromopropyl)-phthalimide (8) in a round bottom flask and the mixture was refluxed at 156°C for 24 hours. Afterwards, excess triethyl phosphite was removed via reduced pressure distillation and 3-[(phthalimido)propyl]-diethylphosphonate ester (9) was obtained; (yield: 75%). Next, 3.5 g (11.9 mmol) of 3-[(phthalimido)propyl]-diethylphosphonate ester was dissolved in 50 mL of ethanol and 3 mL of 80% hydrazine hydrate aqueous solution was added dropwise. The reaction mixture was stirred for 72 hours. Afterwards, the solution was diluted with another 20 mL of ethanol and phthalhydrazide was removed via filtration. Finally, the solvent was removed under reduced pressure to yield a pale yellow colored viscous liquid of 3-aminopropyl-diethylphosphonate (10); yield: 60%. In the last step, 1.00 g (5.12 mmol) of 3-aminopropyl-diethylphosphonate was dissolved into 50 mL 6M HCl in a round bottom flask and was refluxed for 2 days. Afterwards, the solvent was removed using a rotary evaporator and the residue was washed 3x with ethanol: water (1:1) solution. The hydrochloride salt of 3-aminopropylphosphonic acid was dissolved in ethanol, and a white precipitation of 3-aminopropylphosphonic acid (11) was observed after the addition of 1.5 mL of propylene oxide. The precipitate was filtered and was washed with a water /ethanol solution; yield: 50%. The purity of the product was confirmed by 1H and 31P NMR. 1H NMR (25°C, D$_2$O, 400MHz): 2.95 (t, 2H), 1.77 (m, 2H), 1.54 (m, 2H); 31P: 22.31(s).
4.2.7 Synthesis of 8-aminooctylphosphonic acid, $\text{H}_2\text{N}-(\text{CH}_2)_8\text{-Br}$

Scheme 7. Schematic diagram of the synthesis of 3-aminooctylphosphonic acid

Figure 6. ^1H and ^{31}P (box) of NMR of 3-aminopropylphosphonic acid.
The QD ligand 8-aminopropylphosphonic acid (16) was synthesized following the same procedure as 3-aminopropylphosphonic acid (11). The purity of the product was confirmed via \(^1\)H and \(^{31}\)P NMR. \(^1\)H NMR (25°C, D\(_2\)O, 400MHz): 1.06 (m, 2H), 1.22 (m, 8H), 1.38 (m, 2H), 1.74 (m, 4H), 2.60 (t, 2H); \(^{31}\)P: 30.92(s).

![NMR spectrum](image)

Figure 7. \(^1\)H and \(^{31}\)P (box) of NMR of 8-aminooctylphosphonic acid.

4.2.8 Strategy 1: Direct synthesis of CdSe quantum dots in polar solvents

we have used two different solvents, water and dimethylformamide (DMF) to synthesize CdSe QDs in the presence of hydrophilic phosphonic acid as QD ligands.
4.2.8.1 Direct synthesis of CdSe QDs in water

First, 4.5 mg (0.12 mmol) of NaBH$_4$ and 8 mg (0.1 mmol) of selenium were taken into a three neck round bottom flask attached with an addition funnel. The whole system was kept under an inert atmosphere at 0°C. Next, 5 mL of ethanol was added to this cold mixture. Initially, a vigorous foaming was observed in the first 5 mins which later subsided forming a clear solution of NaHSe. The whole apparatus was kept properly sealed and under nitrogen atmosphere, otherwise red coloration was observed due to the oxidation of NaHSe.

In another 2 neck round bottom flask, 154 mg (1 mmol) of 3-phosphonopropionic acid was dissolved into 40 mL of slightly basic (pH~8) water. Then, 73 mg (0.4 mmol) of CdCl$_2$ suspension in 2 mL of water was added to it dropwise with vigorous stirring. The total volume of the solution was 50 mL. This round bottom flask was connected with the flask containing NaHSe solution via rubber tubing (see scheme 8). Initially, the reaction flask was kept at 60°C for CdSe core synthesis.

Under stirring, H$_2$Se gas was generated by the reaction of the ethanolic solution of NaHSe upon the addition of 2 mL of 50 mM of H$_2$SO$_4$ acid. Afterwards, the gas was passed under the flow of nitrogen to reaction vessel containing Cd (+2) salt and ligand via the connected tubes. The temperature of the reaction vessel was increased slowly from 60 °C to 80 °C. However, a dark maroon colored solution formed and it was precipitated within 10 mins which indicates the formation of Se nanoparticles and no emission was observed.
Scheme 8. Schematic diagram of the direct synthesis of CdSe quantum dots in presence of phosphonic acid ligands in a polar medium.

4.2.8.2 Direct synthesis of CdSe QDs in dimethylformamide

I have used the same protocol to synthesize CdSe quantum dots in dimethylformamide as solvent instead of water. In DMF, a pure solution of orange colored CdSe quantum dots formed that displayed a faint green emission. The experiment was repeated with 8-aminocetylphosphonic acid and 3-aminopropylphosphonic acid and the same result was observed.
4.2.9 **Strategy 2: Synthesis of CdSe quantum dots in hydrophobic solvent**

Here, 128 mg (1 mmol) of cadmium oxide, 836 mg (4 mmol) of 8-aminoctylphosphonic acid, and 5.00 g of trioctylphosphine oxide were taken in a three neck round bottom flask attached with a thermocouple and a reflux condenser. The solution was degassed at 120°C for 2 hours and then it was heated to 300°C for 15 mins. Usually, at this temperature, the brown color of cadmium oxide vanishes, indicating the formation of cadmium phosphonate. Once the solution became clear, 1 mL of TOPSe was injected immediately and it was kept at 300 °C for 15 minutes. Afterwards, it was cooled to room temperature. No indication of quantum dot formation was evident. Only a weak blue emission was observed. The similar procedure was followed for 3-aminopropylphosphonic acid as ligand and same result was observed.

Scheme 9. High temperature rapid injection synthesis of CdSe quantum dots in presence of phosphonic acid ligands.
I used a similar procedure with 1-octadecene as solvent in the presence of mPEG phosphonate ligands. The dark brown color of the solution became clear at 180°C and TOPSe was injected at 220°C. As in the previous example, no QDs were formed using this procedure.

4.2.10 Strategy 3: Ligand exchange from hydrophobic to hydrophilic phosphonic acid ligands

In this protocol, we have synthesized oleic acid coated CdSe/ZnS quantum dots and followed a ligand exchange protocol to replace oleic acid with different types of phosphonic acid ligands.

4.2.10.1 Direct synthesis of cadmium oleate, Cd(Oleate)2

First, 2.3 gm (8.25 mmol) of purified oleic acid, 500 mg (3 mmol) of cadmium oxide, and 10 mL of 1-octadecene were loaded into a round bottom flask attached with a thermocouple and reflux condenser. The mixture was degassed at 100 °C for 1 hour and then it was heated to 180 °C for another 1.5-2 hours until the solution became clear. Afterwards, this solution was cooled to room temperature and saved as Cd(oleate)2 stock solution for further synthesis.

4.2.10.2 Synthesis of oleic acid-coated CdSe/ZnS quantum dots

First, 7 mL of Cd(oleate)2 stock solution, 1.5 g of oleic acid and 20 g of ODE were loaded into a three neck round bottom flask. The solution was degassed for 2 hours at 110 °C and then the solution was heated to 240 °C. At this elevated temperature, 0.7 mL of TOPSe was quickly injected
into the solution. The solution became orange almost immediately, indicating the formation of CdSe cores. The solution was cooled to room temperature.

For shell formation, 15 mL ODE and 1.5 g of oleic acid were loaded into a 4-neck round bottom flask and was degassed at room temperature for 1 hour. In the meantime, 4 g of the CdSe quantum dot core solution was mixed with methanol, isopropanol, and hexane to initiate the precipitation of the dots. Then it was dissolved in 3 mL hexane and the QD solution was injected into 4-neck round bottom flask. Hexane was removed by degassing for 2 hours. After degassing, the temperature of the solution was increased to 160 °C and 45 mg of diethyl zinc and 120 mg of bis(trimethylsilyl)sulfide in 1 mL of ODE was added dropwise over 2 hours. It was kept at 160 °C for another half an hour. It was then cooled to room temperature. A red emission was observed, indicating the formation of core/shell CdSe/ZnS QDs.

4.2.10.3 Ligand replacement from oleic acid to phosphonic acid in biphasic medium

First, 0.3 g of CdSe/ZnS core-shell quantum dots were precipitated using ethanol/isopropanol/hexane solution. It was centrifuged and redispersed into 2 mL hexane. Next, 300 mg of 3-phosphonopropionic acid was dissolved into methanol, which was added dropwise to the QD solution and was kept for stirring overnight. The quantum dots went into the polar layer immediately, but kept precipitating from the polar layer. The same result observed with both 8-aminooctylphosphonic acid and 3-aminopropylphosphonic acid ligands and water in place of alcohol.
Scheme 10. Schematic diagram of ligand exchange protocol in biphasic medium.

4.2.11 Characterization

Absorption and emission measurements were performed with a Varian Cary 300 Bio UV/Vis and a customized Fluorolog (HORIBA Jobin Yvon) modular spectrofluorometer, respectively. 1H NMR and 13C NMR spectra were recorded at various temperatures using Bruker Avance DRX 400 NMR spectrometer.

4.3 RESULTS AND DISCUSSION

As stated previously, water solubilization of QDs is a challenging issue as the majority of methods result in instable and quenched quantum dots. Our primary goal in this project is to synthesize a series of hydrophilic phosphonic acid ligands and apply them to solubilize CdSe QDs in water. According to the framework (scheme 1), we have selected following five compounds:
mPEG350-phosphonic acid, mPEG750-phosphonic acid, 3-aminopropylphosphonic acid, 8-amino propylphosphonic acid, and commercially available 3-phosphonopropionic acid. In case of mPEG-phosphonic acids, the last step i.e. the synthesis of mPEG-phosphonic acid from mPEG-phosphonate, was challenging. In presence of Me₃SiBr, a mixture of phosphonic acids were obtained due to partial hydrolysis of the mPEG moiety. However, I could not find a suitable procedure to hydrolyze the phosphonate ester without mPEG- hydrolysis.

After the synthesis of these ligands, the next step was to apply a procedure to water solubilize CdSe QDs. Here, we have followed three different strategies to incorporate phosphonic acid ligands on the surface of these quantum dots.

4.3.1 Strategy 1: Direct synthesis

In this strategy, we used H₂Se (g) as a source of Se and CdCl₂ as a Cd (+2) source. However, in presence of phosphonic acid ligands in water, we have observed a white precipitation of Cd(phosphonate)₂ that did not dissolve in water even at an elevated temperature. After H₂Se gas was passed through the solution, a wine red-colored precipitation of selenium nanoparticles was observed. To decrease the interaction between Cd (+2) and phosphonic acid, a less polar solvent, dimethylformamide was used instead of water. In DMF, orange colored CdSe quantum dots were formed and characterized using UV-Vis spectrophotometer. A small amount of this sample was precipitated to remove other byproducts and dissolved into aqueous medium. Within few minutes, precipitation of quantum dots was observed. Most likely the ligands are weakly bound on the surface of QDs or dimethylformamide itself is acting as ligand to stabilize CdSe QDs. Due to weak
interaction between DMF and QD surface, it becomes highly unstable once it went into water medium.

![CdSe in DMF](image)

Figure 8. UV/Vis spectra of CdSe quantum dots in DMF.

4.3.2 Strategy 2: Synthesis in high boiling point solvent

In this strategy, we attempted to apply mPEG350-diethylphosphonate and mPEG750-diethylphosphonate ligands at higher temperature by synthesizing Cd(mPEG-phosphonate)$_2$ via hydrolysis of the ester bond catalyzed by Cd (+2) at a high temperature. A change in color of the solution from dark brown to colorless at a high temperature demonstrated the formation Cd(mPEG-phosphonate)$_2$. The same result was observed irrespective of the nature of ligands. In next step, we have used TOPSe as a source of selenium to generate CdSe quantum dot cores. However, no emission and change in color of solution was observed. To increase the reactivity of selenium precursor, we substituted TOPSe with Ph$_2$PSe; still same observation was noted. It is difficult to ascertain the reason behind these observations, yet we believe that, in presence of
hydrophilic phosphonic acids, a stable polymerized cluster of Cd-phosphonate forms that is highly inert towards successive transformation into quantum dots.

4.3.3 Strategy 3: Ligand exchange

Here, we have used a biphasic approach to replace the native oleic acid ligands with polar phosphonic acid ones. In this protocol, we added a methanolic solution of phosphonic acid to a hexane solution of oleic acid-coated CdSe/ZnS QDs. Immediately after the addition of phosphonic acids, QDs transferred from nonpolar phase to polar phase. However, the dots started to precipitate from methanolic medium immediately after the phase transfer. Initially, as the QDs transferred from nonpolar phase to polar phase, we believe that the native ligands were displaced from the surface. However, after phase transfer, the ligands from the QDs fall off and it leads to permanent precipitation of QDs. This observation can be explained via thermodynamics. In a polar medium, phosphonic acids are solvated in a lower free energy state compared to solvated while conjugated to the QD surface, see scheme 11. Also, the transformation to freely solvated phosphonic acids to solvated phosphonic acid coated quantum dots is entropically favorable. Overall, basic thermodynamics restrict the solubilization of quantum dots into polar medium.

4.4 CONCLUSION

Water solubilization of quantum dots is a critical technique for many applications. This research represents an attempt to keep the stability and quality of QDs in an aqueous medium the same as that observed in a nonpolar medium. In this project, the idea was to mimic the interaction
between alkyl phosphonic acids with CdSe QDs in water via modification of hydrophobic alkyl phosphonic acids into polar species. However, the outcome was always unfavorable as QDs always precipitated from the polar medium. It is difficult to ascertain the reason behind these observations. However, this could be a result of either self-polymerization of polar phosphonic acids under appropriate condition, weak interaction between QD and ligands, or the fact that ΔG of the free solvated state is lower.
5 Conclusion

Colloidal semiconductor nanocrystals, or quantum dots, are excellent tools for numerous applications such as alternative energy generation and biological sensing. Our group is well known for the synthesis of high quality quantum dots and demonstrating applications for bioimaging and bio-sensing. My research explored Group-V (P, As, Sb, Bi) semiconductor chemistry. The synthesis of pnictide semiconductor nanostructures is challenging as well as dangerous. At present, there are few options for pnictide precursors and considering their physical characteristics, it is difficult to use them under simple laboratory conditions. The majority of my research was focused on developing safe and effective group-V precursors for the syntheses of a wide range of pnictide semiconductor nanoparticles. For one project, I successfully synthesized an effective arsenic precursor, bis-[N,N-trimethylsilyl)amido chloroarsenic, which has minimal air sensitivity and low vapor pressure, and is significantly safer to handle than gaseous hydrides or pyrophoric tris(trimethylsilyl)arsine. A variety of arsenide nanomaterials with different compositions and shapes have been synthesized with this precursor. The discovery of enargite (Cu₃AsS₄) nanorods was the most interesting. The mechanisms that result in the formation of the products were explored with DFT and NMR analyses. The understanding behind mechanistic studies help us to expand the horizons for use of this precursor to other systems.

Considering the results with this arsenic precursor, we realized that other pnictide reagents incorporating the -N(TMS)₂ ligand are highly stable, solid, easy to synthesize, and safe to handle. I followed up on these arsenic studies via exploring two other pnictide precursors, Sb[N(SiMe₃)]₃ and Bi[N(SiMe₃)]₃, and their application to synthesize two silver based dichalcogenide nanomaterials, AgBiSe₂ and AgSbSe₂.
Future research on Group-V nanomaterial chemistry will likely explore phosphorous. Semiconductor phosphide nanomaterials are important class of materials due to their potential application in photovoltaics and bioimaging. However, the synthesis of safe and efficient phosphide precursors is as challenging as with other pnictides. The ubiquitous reagent, tris(trimethylsilyl)phosphine, [(Me₃Si)₃P] is highly flammable and extremely costly. During my research in Prof. Snee’s group, I have also worked on the syntheses of different types of efficient phosphorous precursors (Fig. 1), mostly tris(triphenyltin)phosphate. Compound (1) and (2) were synthesized from white P₄ directly to avoid the use of PCl₃. As, the byproducts involved with PCl₃ production are acutely toxic, we followed Prof. Cummin’s work to develop “Green P Precursors”. Unfortunately, all of them were found unproductive towards the production of III-V nanomaterials. However, recent discoveries on the use of phosphorous alkyl amides reveals a new chapter to develop safer phosphate precursors for semiconductor nanomaterial synthesis.

![Figure 1](image-url)

Figure 1: Different types of phosphorous precursors

Apart from Pnictide precursor syntheses, I was involved in developing a library of hydrophilic phosphonic acid ligands to solubilize CdSe quantum dots in water. I prepared a series of modified hydrophilic phosphonic acids with a polar tail and followed a variety of strategies to apply these ligands for water solubilizing quantum dots. However, their use was unproductive. It
is difficult to ascertain the reason behind this behavior, although I conjecture that the interaction between QDs and phosphonic acids is weak, the ligands underwent self-polymerization, or that unfavorable thermodynamics resulted in the precipitation of quantum dots from the polar media. However, all these reasons restrict the use of these ligands for water solubilization.
REFERENCES

201. Liu, Z.; Shuai, J.; Geng, H.; Mao, J.; Feng, Y.; Zhao, X.; Meng, X.; He, R.; Cai, W.; Sui, J., Contrasting the Role of Mg and Ba Doping on the Microstructure and Thermoelectric Properties of p-Type AgSbSe₂. *ACS Applied Materials & Interfaces* 2015, 7 (41), 23047-23055.

213. Das, A.; Hsu B.; Shamirian A.; Yang Z., Sne T. P., Synthesis of High Quality AgSbSe₂ and AgBiSe₂ Nanocrystals with Antimony and Bismuth Silylamide Reagents. *Chemistry of Materials* 2017, (just accepted).
VITA
ADITA DAS
Department of Chemistry
University of Illinois at Chicago

EDUCATION

Ph.D. Chemistry, University of Illinois at Chicago, Chicago 2011-present
Thesis Title: “Group-V Chemistry of Semiconductor Nanoparticles”
Advisor: Prof. Preston T. Snee

MS Chemistry, University of Illinois at Chicago 2016

MS Chemistry, University of Calcutta, India 2008

BS Chemistry, Presidency College, India 2006

PROFESSIONAL EXPERIENCE

Graduate Research Assistant, with Prof. Preston T. Snee 2011-present
University of Illinois at Chicago, Department of Chemistry, IL, USA
Synthesized pnictide precursors for quantum dot synthesis, synthesized polar modified phosphonic acids for water solubilization of quantum dots.

Research Assistant, with Prof. Dilip K. Maiti 2008-2010
University of Calcutta, Department of Chemistry, India
Synthesized Cu (0) nanoparticles in an aqueous medium, applying in a reductive cleavage of isoxazoline, carbonyl azide and domino cyclization reactions.

Graduate Teaching Assistant, 2011-2016
University of Illinois at Chicago, Department of Chemistry, IL, USA
General Chemistry Lab Coordinator & Teaching Assistant
Mentored teaching assistants and prepared laboratory memos and materials, supported the instructor in modifying experiments and the course module, edited & updated the Chemistry-100 Laboratory Manual.

HONORS AND AWARDS

Chancellor’s Student Service & Leadership Award 2016
University of Illinois at Chicago, IL, USA

LAS PhD Student Travel Award 2016
University of Illinois at Chicago, IL, USA

National Eligibility Test (NET) 2008
Council of Scientific & Industrial Research (CSIR), India
PROFESSIONAL AFFILIATIONS

Graduate Women in Chemistry, UIC
2015 – 2016
American Chemical Society
2015 – Present
Chemistry Graduate Student Association (CGSA)
2014 – 2016

PUBLICATIONS

2. Adita Das, Bo Hsu, Armen Shamirian, Zheng Yang and Preston T. Snee, “Synthesis of High Quality AgSbSe₂ and AgBiSe₂ Nanocrystals with Antimony and Bismuth Silylamide Reagents” Chem. Mater. 2017; (just accepted); DOI: 10.1021/acs.chemmater.7b01593
APPENDIX

Permission/License is Granted for Your Order at No Charge

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.
This Agreement between Adita Das ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number: 4079600003137
License date: Mar 31, 2017
Licensed Content Publisher: John Wiley and Sons
Licensed Content Publication: ChemPhysChem
Licensed Content Title: Synthetic Developments of Nontoxic Quantum Dots
Licensed Content Author: Adita Das, Preston T. Snee
Licensed Content Date: Dec 8, 2015
Licensed Content Pages: 20
Type of use: Dissertation/Thesis
Requestor type: Author of this Wiley article
Format: Print and electronic
Portion: Figure/table
Number of figures/tables: 1
Original Wiley figure/table number(s): Scheme 6
Will you be translating?: No
Title of your thesis / dissertation: Group-V Chemistry of Semiconductor Nanoparticles
Expected completion date: May 2017
Expected size (number of pages): 120
Requestor Location: Adita Das
845 West Taylor Street
Room 4500
CHICAGO, IL 60614
United States
Attn: Adita Das
Publisher Tax ID: EU026007151
Billing Type: Invoice
Billing Address: Adita Das
845 West Taylor Street
Room 4500
CHICAGO, IL 60614
United States
Attn: Adita Das
Total: 0.00 USD
Terms and Conditions:
https://is100.copyright.com/CustomerAdmin/IPL.jsp?ref=778f5bd1f57e-4560-ad51-0cc0db643724
 TERMS AND CONDITIONS
This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a "Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions")), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.

- You are hereby granted a personal, non-exclusive, non-sub licensable (on a stand-alone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.

- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts. You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.

- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right,
license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto.

- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.

- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.

- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.

- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.

- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
• Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.

• These terms and conditions together with CCC’s Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.

• In the event of any conflict between your obligations established by these terms and conditions and those established by CCC’s Billing and Payment terms and conditions, these terms and conditions shall prevail.

• WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC’s Billing and Payment terms and conditions.

• This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.

• This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS
Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC-BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License
The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License
The Creative Commons Attribution Non-Commercial (CC-BY-NC) License permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. (see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License
The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)
Use by commercial "for-profit" organizations
Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://onlinelibrary.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015
Questions? customerCare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
This Agreement between Adita Das ("You") and Royal Society of Chemistry ("Royal Society of Chemistry") consists of your license details and the terms and conditions provided by Royal Society of Chemistry and Copyright Clearance Center.

<table>
<thead>
<tr>
<th>License Number</th>
<th>4079601307344</th>
</tr>
</thead>
<tbody>
<tr>
<td>License date</td>
<td>Mar 31, 2017</td>
</tr>
<tr>
<td>Licensed Content Publisher</td>
<td>Royal Society of Chemistry</td>
</tr>
<tr>
<td>Licensed Content Publication</td>
<td>Physical Chemistry Chemical Physics</td>
</tr>
<tr>
<td>Licensed Content Title</td>
<td>A primer on the synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status</td>
</tr>
<tr>
<td>Licensed Content Author</td>
<td>Christina Marie Tyrakowski, Preston Todd Snee</td>
</tr>
<tr>
<td>Licensed Content Date</td>
<td>Nov 11, 2013</td>
</tr>
<tr>
<td>Licensed Content Volume</td>
<td>16</td>
</tr>
<tr>
<td>Licensed Content Issue</td>
<td>3</td>
</tr>
<tr>
<td>Type of Use</td>
<td>Thesis/Dissertation</td>
</tr>
<tr>
<td>Requestor type</td>
<td>academic/educational</td>
</tr>
<tr>
<td>Portion</td>
<td>figures/tables/images</td>
</tr>
<tr>
<td>Number of figures/tables/images</td>
<td>1</td>
</tr>
<tr>
<td>Format</td>
<td>print and electronic</td>
</tr>
<tr>
<td>Distribution quantity</td>
<td>100</td>
</tr>
<tr>
<td>Will you be translating?</td>
<td>no</td>
</tr>
<tr>
<td>Order reference number</td>
<td></td>
</tr>
<tr>
<td>Title of the thesis/dissertation</td>
<td>Group-V Chemistry of Semiconductor Nanoparticles</td>
</tr>
<tr>
<td>Expected completion date</td>
<td>May 2017</td>
</tr>
<tr>
<td>Estimated size</td>
<td>120</td>
</tr>
<tr>
<td>Requestor Location</td>
<td>Adita Das</td>
</tr>
<tr>
<td></td>
<td>845 West Taylor Street</td>
</tr>
<tr>
<td></td>
<td>Room 4500</td>
</tr>
<tr>
<td></td>
<td>CHICAGO, IL 60614</td>
</tr>
<tr>
<td></td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td>Attn: Adita Das</td>
</tr>
<tr>
<td>Billing Type</td>
<td>Invoice</td>
</tr>
<tr>
<td>Billing Address</td>
<td>Adita Das</td>
</tr>
<tr>
<td></td>
<td>845 West Taylor Street</td>
</tr>
<tr>
<td></td>
<td>Room 4500</td>
</tr>
<tr>
<td></td>
<td>CHICAGO, IL 60614</td>
</tr>
<tr>
<td></td>
<td>United States</td>
</tr>
<tr>
<td></td>
<td>Attn: Adita Das</td>
</tr>
</tbody>
</table>
Terms and Conditions

This License Agreement is between {Requestor Name} ("You") and The Royal Society of Chemistry ("RSC") provided by the Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by the Royal Society of Chemistry, and the payment terms and conditions.

RSC / TERMS AND CONDITIONS

INTRODUCTION

The publisher for this copyrighted material is The Royal Society of Chemistry. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by CCC, at the time that you opened your RightsLink account and that are available at any time at .

LICENSE GRANTED

The RSC hereby grants you a non-exclusive license to use the aforementioned material anywhere in the world subject to the terms and conditions indicated herein. Reproduction of the material is confined to the purpose and/or media for which permission is hereby given.

RESERVATION OF RIGHTS

The RSC reserves all rights not specifically granted in the combination of (i) the license details provided by your and accepted in the course of this licensing transaction; (ii) these terms and conditions; and (iii) CCC’s Billing and Payment terms and conditions.

REVOCATION

The RSC reserves the right to revoke this license for any reason, including, but not limited to, advertising and promotional uses of RSC content, third party usage, and incorrect source figure attribution.

THIRD-PARTY MATERIAL DISCLAIMER

If part of the material to be used (for example, a figure) has appeared in the RSC publication with credit to another source, permission must also be sought from that source. If the other source is another RSC publication these details should be included in your RightsLink request. If the other source is a third party, permission must be obtained from the third party. The RSC disclaims any responsibility for the reproduction you make of items owned by a third party.

PAYMENT OF FEE

If the permission fee for the requested material is waived in this instance, please be advised that any future requests for the reproduction of RSC materials may attract a fee.

ACKNOWLEDGEMENT

The reproduction of the licensed material must be accompanied by the following acknowledgement:

 Reproduced ("Adapted" or "in part") from {Reference Citation} (or Ref XX) with permission of The Royal Society of Chemistry.

If the licensed material is being reproduced from New Journal of Chemistry (NJC), Photochemical & Photobiological Sciences (PPS) or Physical Chemistry Chemical Physics (PCCP) you must include one of the following acknowledgements:

For figures originally published in NJC:

 Reproduced ("Adapted" or "in part") from {Reference Citation} (or Ref XX) with permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and the RSC.

For figures originally published in PPS:

 Reproduced ("Adapted" or "in part") from {Reference Citation} (or Ref XX) with permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.

For figures originally published in PCCP:

 Reproduced ("Adapted" or "in part") from {Reference Citation} (or Ref XX) with permission of the PCCP Owner Societies.
HYPERTEXT LINKS
With any material which is being reproduced in electronic form, you must include a
hypertext link to the original RSC article on the RSC’s website. The recommended form for
the hyperlink is http://dx.doi.org/10.1039/DOI suffix, for example in the link
http://dx.doi.org/10.1039/b110420a the DOI suffix is ‘b110420a’. To find the relevant DOI
suffix for the RSC article in question, go to the Journals section of the website and locate the
article in the list of papers for the volume and issue of your specific journal. You will find
the DOI suffix quoted there.
LICENSE CONTINGENT ON PAYMENT
While you may exercise the rights licensed immediately upon issuance of the license at the
end of the licensing process for the transaction, provided that you have disclosed complete
and accurate details of your proposed use, no license is finally effective unless and until full
payment is received from you (by CCC) as provided in CCC’s Billing and Payment terms
and conditions. If full payment is not received on a timely basis, then any license
preliminarily granted shall be deemed automatically revoked and shall be void as if never
granted. Further, in the event that you breach any of these terms and conditions or any of
CCC’s Billing and Payment terms and conditions, the license is automatically revoked and
shall be void as if never granted. Use of materials as described in a revoked license, as well
as any use of the materials beyond the scope of an unreveoked license, may constitute
copyright infringement and the RSC reserves the right to take any and all action to protect its
copyright in the materials.
WARRANTIES
The RSC makes no representations or warranties with respect to the licensed material.
INDEMNITY
You hereby indemnify and agree to hold harmless the RSC and the CCC, and their
respective officers, directors, trustees, employees and agents, from and against any and all
claims arising out of your use of the licensed material other than as specifically authorized
pursuant to this licence.
NO TRANSFER OF LICENSE
This license is personal to you or your publisher and may not be sublicensed, assigned, or
transferred by you to any other person without the RSC’s written permission.
NO AMENDMENT EXCEPT IN WRITING
This license may not be amended except in a writing signed by both parties (or, in the case
of “Other Conditions, v1.2”, by CCC on the RSC’s behalf).
OBJECTION TO CONTRARY TERMS
You hereby acknowledge and agree that these terms and conditions, together with CCC’s
Billing and Payment terms and conditions (which are incorporated herein), comprise the
entire agreement between you and the RSC (and CCC) concerning this licensing transaction,
to the exclusion of all other terms and conditions, written or verbal, express or implied
(including any terms contained in any purchase order, acknowledgment, check endorsement
or other writing prepared by you). In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC’s Billing and
Payment terms and conditions, these terms and conditions shall control.
JURISDICTION
This license transaction shall be governed by and construed in accordance with the laws of
the District of Columbia. You hereby agree to submit to the jurisdiction of the courts located
in the District of Columbia for purposes of resolving any disputes that may arise in
connection with this licensing transaction.
LIMITED LICENSE
The following terms and conditions apply to specific license types:
Translation
This permission is granted for non-exclusive world English rights only unless your license
was granted for translation rights. If you licensed translation rights you may only translate
this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

Intranet
If the licensed material is being posted on an Intranet, the Intranet is to be password-protected and made available only to bona fide students or employees only. All content posted to the Intranet must maintain the copyright information line on the bottom of each image. You must also fully reference the material and include a hypertext link as specified above.

Copies of Whole Articles
All copies of whole articles must maintain, if available, the copyright information line on the bottom of each page.

Other Conditions
v1.2
Gratuitous licenses (referencing $0 in the Total field) are free. Please retain this printable license for your reference. No payment is required.
If you would like to pay for this license now, please remit this license along with your payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be invoiced within 48 hours of the license date. Payment should be in the form of a check or money order referencing your account number and this invoice number (Invoice Number). Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
29118 Network Place
Chicago, IL 60673-1291

For suggestions or comments regarding this order, contact Rightslink Customer Support:
customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.
PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
- Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words.
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.