Anti-miRNA Delivery Systems Based on Self-assembled Nanostructure

By
YU ZHANG
B.S., Northeast Forestry University, China, 2007
M.S. Northeast Forestry University, China, 2010

Dissertation
Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Biopharmaceutical Sciences in the Graduate
College of the University of Illinois at Chicago, 2015
Chicago, IL

Defense Committee:

Richard A. Gemeinhart, Chair and Advisor
Debra Tonetti,
Seungpyo Hong,
Rohit Kolhatkar,
Mahesh V. Chaubal, Baxter
I would like to dedicate my dissertation to my beloved parents, Baomin Zhang and Yunli Yu, my husband, Yang Liu, and my daughter, Sophia T. Liu, for believing in me and giving me encouragement, strength and support to pursue my dreams.
Acknowledgement

My Ph.D. time at UIC is truly transformative. I am grateful to the Biopharmaceutical Sciences Department for the opportunity to pursue my dreams. First and for most, I would like to thank my thesis adviser, Professor Richard A. Gemeinhart, for his support and guidance. He taught me to always look at my own work with critical eyes and give my dedication to everything I do. The academic freedom he establishes in the lab and in daily communications fostered my ability to think independently and creatively. I am also very appreciative of my committee members, Dr. Debra Tonetti, Dr. Seungpyo Hong, Dr. Rohit Kolhatkar, Dr. Mahesh V. Chaubal and Dr. Xiaolong He for their helpful feedback and discussions.

I would like to acknowledge my former and current lab members for always providing help, Dr. Melanie Köllmer, Jason Buhrman, Jamie Rayahin, Mary Tang, Amy Ross and the undergraduate student researcher that has worked with me on this research project, Elizabeth Ramirez. I am also very appreciative of my collaborators, Dr. Petr Král and Soumyo Sen in his group, who performed the molecular dynamics simulations. I would also like to thank Dr. Larry L. Klein for helpful discussion about polymer conjugation and Dr. Gerd Prehna for assistance with ITC experiments.

I also thank Drs. Beck, Onyuksel, Tonetti and Hong for sharing of equipment and resources. I also would like to thank other students in the BPS department, especially, Dr. Ja Hye Myung, Dr. Suhair Sunoqrot, Dr. Yang Yang, Dr. Ryan Pearson, and Dr. Fatima Khaja for discussions and showing lab techniques. I also appreciate our wonderful office staff Celina Tejada, Connie Bouye and Tonya Kuzmis for their support.
Contribution of Authors

The first part of Chapter 1 is a published literature review [Yu Zhang, Zaijie Wang, Richard A. Gemeinhart. J Control Release. 2013 Dec 28;172(3):962-74] that summarizes the current progress of microRNA delivery research. I was the first author and wrote major portion of the manuscript. Dr. Zaijie Wang and my advisor, Dr. Richard A. Gemeinhart, also contributed to the writing of the review. Chapter 2 is a published manuscript (Yu Zhang, Melanie Köllmer, Jason S. Buhrman, Mary Y. Tang, Richard A. Gemeinhart. Peptides, 2014, 58:83-90). I was the first author and major driver of the research. Dr. Melanie Köllmer assisted me in the RT-PCR experiment of Figure 2.4. Jason S. Buhrman helped me with the Confocal Microscope imaging of Figure 2.3. Mary Y. Tang had some discussion with me about the manuscript structure. Dr. Richard A. Gemeinhart contributed to the writing of the manuscript. Chapter 3 represents a published manuscript (Yu Zhang, Yang Liu, Soumyo Sen, Petr Král, Richard A. Gemeinhart. Nanoscale. 2015, 7, 7559-7564). I was the first author and major driver of the research. Yang Liu assisted me with the NMR analysis in Figure 3.1 and 3.4. Soumyo Sen and Dr. Petr Král generated Figure 3.5. Dr. Richard A. Gemeinhart contributed to the writing of the manuscript. Chapter 4 represents my own unpublished work investigating the contribution of redox-responsive feature on anti-miRNA release from micelleplexes and micelleplexes stability in bodily fluids. I plan to publish this chapter as first author together with several other co-authors. Chapter 5 summarizes my overarching conclusions. The overall scientific contribution of my dissertation to the field and future directions are discussed.
TABLE OF CONTENTS

CHAPTERS

1. **Introduction**
 - 1.1 Discovery and action of miRNAs
 - 1.2 MicroRNA therapeutic approaches
 - 1.3 Synthetic materials for miRNA and anti-miRNA oligonucleotide delivery
 - 1.4 Challenges for developing short oligonucleotides delivery system
 - 1.5 Dissertation outline and objectives
 - 1.6 References

2. **Arginine-rich, Cell Penetrating Peptide–anti-microRNA Complexes Decrease Glioblastoma Migration Potential**
 - 2.1 Abstract
 - 2.2 Introduction
 - 2.3 Materials and Methods
 - 2.4 Results and Discussion
 - 2.5 Conclusion
 - 2.6 References

3. **Charged Group Surface Accessibility Determines Micelleplexes Formation and Cellular Interaction**
 - 3.1 Abstract
 - 3.2 Introduction
 - 3.3 Materials and Methods
 - 3.4 Result and Discussion
 - 3.5 Conclusion
 - 3.6 References

4. **Redox-responsive Anti-miRNAs Delivery System Demonstrates Superior Potential for Releasing MiRNAs**
 - 4.1 Abstract
 - 4.2 Introduction
4.3 Materials and Methods............................137
4.4 Result and Discussion............................146
4.5 Conclusions.......................................162
4.6 References..163
5 Conclusion and Future Work........................170
5.1 MiRNA Delivery Overview.........................170
5.2 Scientific Contribution of This Study.............171
5.3 Recommended Future Research....................174
5.4 References..178
APPENDICES..182
VITA..193
LIST OF FIGURES

Figure 1.1. Schematic representation of the biogenesis of miRNA. From genomic DNA, RNA is transcribed either as (1) an independent miRNA sequence or (2) an intron that is removed from mRNA. Following loop formation, the pre-miRNA is processed by DROSHA into pre-miRNA. The pre-miRNA is exported from the nucleus by Exportin5 before maturation by Dicer. Upon loading into the RISC complex, the miRNA duplex is unwound and the mature strand (red strand) retained within the miRISC complex. The passenger strand (green strand) is degraded. 4

Figure 1.2. Mechanism of natural miRNA-mRNA action. The roles of miRNA in protein production have been proposed to be through many routes. The majority of the actions inhibit protein production, but several modes of promotion of protein production have also been proposed. Binding of miRNA to DNA may promote transcription directly or through the recruitment of other factors. In addition, translation can be promoted by 5’UTR binding. Inhibitory action is likely through a combination of the mechanisms shown which include (1) direct mRNA degradation, (2) deadenylation, (3) initiation repression, (4) ribosomal stalling, (5) ribosomal drop-off, (6) co-translational degradation, and (7) translation repression following DNA binding..5

Figure 1.3. Chemistry and structure of miRNA therapeutic molecules. RNA molecules (RNA) has several bonds that have been modified for stability including the alpha oxygen of phosphate (red), 4’ hydrogen (green), 2’ hydroxide (orange), 4’ hydrogen (purple), and the 1’ amide linkage to the base (blue). Peptide nucleic acids (PNAs) substitute a peptide bond at the 1’ amide linkage to the base. Phosphorothioates, methylphosphonates, and boranophosphates substitute a sulfur, methyl, and a borano group, respectively, for the alpha-oxygen of the phosphate. Locked nucleic acids (LNAs) add a secondary linkage between the 4’ carbon and the 2’ hydroxide while 2’-O-(2-methoxyethyl)- (2’-O-MOE), 2’-O-methyl- (2’-O-Me), and 2’-fluoro- (2’-F) RNAs substitutes less reactive groups for the 2’ hydroxyl group..10

Figure 1.4. Therapeutic Strategies for miRNA activity. Delivered DNA or RNA (green) can
act to augment, mimic miRNA activity or prevent activity of miRNA. MicroRNA can be produced by plasmid DNA (gene therapy) that is introduced into the cell, or by introducing agents to increase by translation promoters or cofactors, or delivered directly (in the forms of pri-, pre-, or mature with or without passenger). To prevent the activity of expressed miRNAs, miRNA binding with mRNA may be inhibited by masks of the binding of miRNA with the RISC complex may be inhibited with a sponge or a single binding anti-miRNA. Finally, translation may be directly repressed at the DNA level.

Figure 2.1. Physicochemical characterization of complexes. (A) Mobility of siRNA (upper panel) and anti-miRNA (lower panel) was retarded in the presence of R₈ peptide above a threshold charge (+/-) ratio. (B) Fluorescence was also quenched above a threshold charge (+/-) ratio, indicating double stranded siRNA (■) and single stranded anti-miRNA (♦) were condensed by the R₈ peptide (mean ± S.E.M., n=3). Similarly, R₈ complex (C) diameters and (D) ζ potential were measured by dynamic light scattering (mean ± S.E.M., n=3) for siRNA/R₈ complexes (■) and anti-miRNA/R₈ complexes (♦) further indicating complex formation at the given charge (+/-) ratios (mean ± S.E.M., n=3).

Figure 2.2. Cell association of RNA/R₈ complexes. Relative association of anti-miRNA/R₈ (blue bars) and siRNA/R₈ (red bars) with U251 glioblastoma cells after 4-hour interaction in vitro measured by flow cytometry (mean ± S.E.M., n=3).

Figure 2.3. Evaluation of endosomal escape efficiencies of anti-miRNA/R₈ and siRNA/R₈. (A) Representative confocal micrographs of siRNA/R₈ (left) and anti-miRNA/R₈ (right) complex-endosome colocalization showing RNA (red), endosome (green), nuclei (blue), and the composite of the three pseudocolor images where the RNA concentration was 55 nM and mixed with R₈ at a charge ratio of 50. (B) Quantitative comparison of endosome escape efficiency, ε_{ee}, between anti-miRNA/R₈ and siRNA/R₈. Endosome escape efficiency was calculated for 20 random, individual cells ($p < 0.001$).

Figure 2.4. Indirect measurement of anti-miRNA activity by detecting the mRNA of downstream miR-21 targets. (A) PDCD4 and (B) SERPINB5 mRNA levels relative to
GAPDH mRNA in cells treated with the R₈ peptide, control (ctrl) anti-miRNA/R₈ complexes, and anti-miRNA-21/R₈ complexes where the RNA concentration was 55 nM and mixed with R₈ at a charge ratio of 50 (mean±S.E.M.; n=3). Statistical significance compared to the anti-miRNA/R₈ group (†), ctrl anti-miRNA/R₈ group (‡), and R₈ treatment group (§) is presented as one (0.01 < p < 0.05), two (0.001 < p < 0.01), or three (p < 0.001) symbols.

Figure 2.5. Relative U251 survival (mitochondrial activity). After incubation with the anti-miR21/R₈ complex (■) or control (ctrl) anti-miRNA/R₈ complex (□) for varying times (mean±S.E.M.; n=3).

Figure 2.6. Inhibition of U251 cell migration after anti-miR-21/R₈ transfection. (A) Micrographs of U251 cells immediately after (0 hr) and 48 hours after wounding. (B) Wound recovery (P) measured 72 hours post transfection following treatment with R₈ peptide, ctrl anti-miRNA/R₈ complexes, or anti-miRNA-21/R₈ complexes where the RNA concentration was 55 nM and mixed with R₈ at a charge ratio of 50 (mean±S.E.M.; n=3). The wound recovery (P) of the three groups were normalized to the cell control group underwent wounding assay but no treatment. Statistical significance compared to the anti-miRNA/R₈ group (†) and control anti-miRNA/R₈ group (‡) treatment group is presented (0.001 < p < 0.01).

Figure 3.1. ¹H NMR spectra of (A) mPEG-PLA-COOH (B) CR₈ (C) mPEG-PLA-R₈ (D) mPEG-PLA-R₁₅Low (E) mPEG-PLA-R₁₅High. The purified products have characteristic peaks from both PLA segment (a, δ 5.19, 1H) and guanidine group (b, δ 7.43, 4H) in R₈.

Figure 3.2. mPEG-PLA-R₈ copolymers have CMC similar to mPEG-PLA. CMC plots of (A) mPEG-PLA (B) mPEG-PLA-R₈ (C) mPEG-PLA-R₁₅Low and (D) mPEG-PLA-R₁₅High. Data represent mean ± standard deviation, N=3.

Figure 3.3. TEM images of mPEG-PLA-R₈, mPEG-PLA-R₁₅Low and mPEG-PLA-R₁₅High micelles and micelleplexes (+/- charge ratio 30).

Figure 3.4. Micelles properties and surface oligoarginine presence. (A) Schematic representation of the micelles formed and the relevant molecular weights of the components. (B) ¹H NMR analysis of the peptides (CR₈ and CR₁₅) and micelles.
Figure 3.5. Molecular dynamics simulation of mPEG-PLA-R₈ micelle. Each monomer consisted of a methoxy-poly(ethylene-glycol)(mPEG; MW ~ 2,000 g/mol; blue) block coupled to the α-hydroxide of poly(lactide) (PLA; MW ~ 3,000 g/mol; red). As in the experiments, 28% of total monomers were modified with oligoarginine (R₈; green) on the ω-carboxylate of the PLA block. The micelles were prepared with total 60 monomers.

Figure 3.6. MiRNA complexation with micelles occurs at lower charge ratios for longer oligoarginine regardless of oligoarginine density. (A) mPEG-PLA-R₈, mPEG-PLA-R₁₅^{Low}, and mPEG-PLA-R₁₅^{High} complexation with miRNA at +/- charge ratios of 1, 5, 10 and 30 (B) mPEG-PLA-R₁₅^{Low} and mPEG-PLA-R₁₅^{High} complexation with miRNA at +/- charge ratios 1, 1.5, 2 and 30.

Figure 3.7. Thermodynamic profiles of single stranded miRNA binding to micelles indicate different interactions occur dependent upon oligoarginine length and density. (A) mPEG-PLA-R₈ (B) mPEG-PLA-R₁₅^{Low} (C) mPEG-PLA-R₁₅^{High} (D) Thermodynamic parameters, derived from ITC, of miRNA binding to mPEG-PLA-R₈, mPEG-PLA-R₁₅^{Low}, and mPEG-PLA-R₁₅^{High} micelles.

Figure 3.8. Micelleplexes are stable to heparin competition. Micelleplexes were prepared at (A) +/- charge ratio 20 or (B) 30 and incubated with heparin at a heparin to miRNA weight ratio (w/w) of 0:1, 4:1, or 8:1 prior to electrophoresis and staining.

Figure 3.9. Cellular association mediated by different micelleplexes. (A) The mean fluorescence intensity observed on U251 glioma cells following interaction with mPEG-PLA-R₈, mPEG-PLA-R₁₅^{Low}, and mPEG-PLA-R₁₅^{High} micelleplexes or untreated cells or Cy3-labeled miRNA. (B) The relative population (%) of cells associated with the mPEG-PLA-R₈, mPEG-PLA-R₁₅^{Low}, and mPEG-PLA-R₁₅^{High} micelleplexes or untreated cells or Cy3-labeled miRNA. N=3, mean ± standard error of the mean.

Figure 4.1. Schematic illustration of micelleplexes assembly.
Figure 4.2. Schematic illustration of micelleplexes disassembly in the presence of intracellular reducing environment. ...136

Figure 4.3. Chemical reaction scheme for redox (A) and nonredox (B) polymer conjugates. ..147

Figure 4.4. 1H NMR spectra of (A) CR15 (B) mPEG-PLA-COOH (C) mPEG-PLA-SS-R15. The purified products have characteristic peaks from both guanidine group (a, δ 7.43, 4H) in R15 and PLA segment (b, δ 5.19, 1H). ..148

Figure 4.5. Micelleplexes characterization. (A) Redox-R15 and Nonredox-R15 micelles complexation with anti-miRNA at +/- charge ratios of 1, 2, 5, 10, 30 and 50. (B) Particle size and zeta potential of Redox-R15 and Nonredox-R15 micelles. (C) TEM characterization of Redox-R15 and Nonredox-R15 micelles and micelleplexes morphology, the scar bar is 100 nm. ...150

Figure 4.6. Stability of micelleplexes and micelles in different media. (A) Micelleplexes stability in PBS, CSF and human plasma (B) Micelles stability in PBS, CSF and human plasma (C) Stability of the association between Cy3-anti-miRNA and micelles in PBS, CSF and human plasma. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed. ..153

Figure 4.7. CLSM observing anti-miRNA dissociation from micelleplexes. (A) Represented CLSM images. Red: Cy3-anti-miRNA, Green: FITC-micelles, Blue: Nucleus, and the composite of the three pseudocolor images where the Cy3-anti-miRNA concentration was 100 nM in association with micelles at a charge ratio of 30. Scale bar is 20 μm. Top two rows: imaging at 4 hours after delivery; bottom two rows, imaging at 24 hours after delivery, micelles containing medium was replaced with fresh medium at 4 hours to stop further cellular uptake. (B) Quantitative analysis of anti-miRNA dissociation rate. Cy3-anti-miRNA/redox-R15 micelleplexes (blue bars) and Cy3-anti-miRNA/nonredox-R15 micelleplexes (red bars). Dissociation rate was calculated for 30 individual cells. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). * indicates p < 0.05. ...157

Figure 4.8. Cytotoxicity of redox and nonredox micelles to U251 cells. Different amount of
micelles were added to U251 cells and cultured in CSF for 4 hours followed by further incubation in full growth medium for 48 hours as in the dual luciferase assay. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed.

Figure 4.9. Anti-miR-21/micelleplexes delivery efficiency with dual luciferase assay. The delivery efficiency of redox-R₁₁₅ micelleplexes (blue bars) and nonredox-R₁₁₅ micelleplexes (red bars) were compared by complexing anti-miR-21 and transfecting U251 glioblastoma cells in cerebrospinal fluid. The firefly luciferase level was normalized with renilla luciferase level. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed. *** indicates \(p < 0.0001 \).

Figure A.1. \(^1H \) NMR spectrum of mPEG-PLA-PDP. The purified product was dissolved in CDCl₃-d, which has the four characteristic peaks from the 3-(2-pyridyldithio) propionyl hydrazide (PDPH), (Red rectangle, aromatic proton, δ 7.52, 1H; 7.91, 1H; 8.02, 1H; 8.68, 1H).

Figure B.1. \(^1H \) NMR spectrum of mPEG-PLA-AEM. The purified product was dissolved in CDCl₃-d, which has the characteristic peak from the N-(2 Aminoethyl)maleimide trifluoroacetate (AEM), (a, δ 6.71, 2H).
LIST OF TABLES

Table 1.1. General properties of commonly described poly(nucleic acid) therapeutics...5
Table 1.2. Current nonviral gene delivery system for miRNA therapeutics............... 19
Table 1.3. Barriers and solutions to miRNA delivery (Adapted from Scholz and Wagner [110]).. 21
Table 3.1. Micelle particle size and ζ-potential... 103
Table 3.2. Estimates of the number of oligo-arginine peptides and miRNA associated with micelles... 108
Table 3.3. Thermodynamic parameters for the binding between different micelles and anti-miRNA..113
Table 3.4. Micelleplexes particle size and ζ-potential.. 114
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMO</td>
<td>Anti-mirna oligonucleotides</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid precursor protein</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain barrier</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSC</td>
<td>Cancer stem cell</td>
</tr>
<tr>
<td>DDAB</td>
<td>Dimethyldioctadecylammonium bromide</td>
</tr>
<tr>
<td>DGCR8</td>
<td>Digeorge syndrome critical region gene</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid;</td>
</tr>
<tr>
<td>DOTMA</td>
<td>1,2-Di-O-octadecenyl-3-trimethylammonium propane</td>
</tr>
<tr>
<td>FANA</td>
<td>Fluorine derivatives nucleic acid</td>
</tr>
<tr>
<td>GC4</td>
<td>Phage identified internalizing scfvs that target tumor sphere cells</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C virus</td>
</tr>
<tr>
<td>iNOP</td>
<td>Nanotransporter interfering nanoparticle-7</td>
</tr>
<tr>
<td>IR</td>
<td>Ionizing radiation</td>
</tr>
<tr>
<td>LAC</td>
<td>Lung adenocarcinoma</td>
</tr>
<tr>
<td>LNA</td>
<td>Locked nucleic acid</td>
</tr>
<tr>
<td>LPH</td>
<td>Liposome-hyaluronic acid</td>
</tr>
<tr>
<td>2’-Me</td>
<td>2’-methyl</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>miRNA</td>
<td>MicroRNA</td>
</tr>
<tr>
<td>2’-MOE</td>
<td>2’-methoxyethyl</td>
</tr>
<tr>
<td>NLE</td>
<td>Neutral lipid emulsion</td>
</tr>
<tr>
<td>NSCLC</td>
<td>Non-small cell lung cancer</td>
</tr>
<tr>
<td>nt</td>
<td>Nucleotides</td>
</tr>
<tr>
<td>ODN</td>
<td>Oligodeoxynucleotides</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethyleneimine</td>
</tr>
<tr>
<td>PNA</td>
<td>Peptide nucleic acids</td>
</tr>
<tr>
<td>PU</td>
<td>Polyurethane</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>RISC</td>
<td>RNA induced silencing complex</td>
</tr>
<tr>
<td>scFv</td>
<td>Single-chain variable fragment</td>
</tr>
<tr>
<td>siRNA</td>
<td>Small interfering RNA</td>
</tr>
<tr>
<td>TEPA-PCL</td>
<td>Dicetyl phosphate-tetraethylenepentamine-based polycation liposomes</td>
</tr>
<tr>
<td>TPGS</td>
<td>D-alpha-tocopheryl polyethylene glycol 1000 succinate</td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated regions</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>CPPs</td>
<td>Cell penetrating peptides</td>
</tr>
<tr>
<td>GBM</td>
<td>Glioblastoma multiforme</td>
</tr>
<tr>
<td>MMPs</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>Rs8</td>
<td>Octaarginine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PDCD4</td>
<td>Programmed cell death 4</td>
</tr>
<tr>
<td>SERPINB5</td>
<td>Serpin peptidase inhibitor, clade B (ovalbumin), member 5</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>S.E.M.</td>
<td>Standard error of the mean</td>
</tr>
<tr>
<td>Ago2</td>
<td>Argonaute 2</td>
</tr>
<tr>
<td>mPEG-PLA</td>
<td>Methoxy-poly(ethylene glycol-b-lactide)</td>
</tr>
<tr>
<td>PEG</td>
<td>Poly(ethylene glycol)</td>
</tr>
<tr>
<td>EDC</td>
<td>N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>NHS</td>
<td>N-hydroxysuccinimide</td>
</tr>
<tr>
<td>PDPH</td>
<td>3-(2-pyridyldithio) propionyl hydrazide</td>
</tr>
<tr>
<td>CMC</td>
<td>Critical micelle concentration</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>ITC</td>
<td>Isothermal titration calorimetry</td>
</tr>
<tr>
<td>MD</td>
<td>Molecular dynamics</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>(CSF)</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>DiI</td>
<td>Dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate</td>
</tr>
<tr>
<td>DiO</td>
<td>3,3’-dioctadecyloxacarbocyanine perchlorate</td>
</tr>
</tbody>
</table>
AEM N-(2-Aminoethyl)maleimide trifluoroacetate salt
TEM Transmission electron microscopy
FRET Förster resonance energy transfer
1 Introduction

1.1 Discovery and action of miRNAs

MicroRNAs (miRNAs) are one of a growing number of non-coding RNA molecules that act within a cell [1, 2]. Noncoding RNAs include miRNA, small interfering RNA (siRNA), ribozymes, among others [3]. Both miRNA and siRNA interact with messenger RNA (mRNA), typically marking the mRNA for degradation as will be described in this review. Ribozymes are RNA molecules that bind to mRNA (or other RNAs) and catalyze the degradation of the RNA with no enzyme [4]. Ribozymes are the only RNAs in this class known to act independent of proteins as catalysts to exert their action.

Herein, we focus on microRNAs as a novel class of therapeutic molecules with an emphasis on the methods used for delivery. Discovered little more than a decade ago [5, 6], miRNAs, small (20-24 nt) single stranded endogenous RNAs, are a class of post-transcriptional gene regulators. Since miRNA activity was confirmed in animals [7, 8] and humans [9, 10], miRNAs have attracted significant attention due to their critical regulatory
impact on biological functions in development, cell proliferation, differentiation, apoptosis, and metabolism [11-15]. The primary miRNA precursor, pri-miRNA, is first transcribed as capped, polyadenylated RNA strands that form double stranded stem-loop structures (Figure 1.1). These pri-miRNAs are processed in the nucleus by DGCR8 and ribonuclease Drosha into 70 to 100 nt long hairpin structures, called pre-miRNAs. Pre-miRNAs are then exported to the cytoplasm by Exportin-5 and further processed by the RNAse Dicer into approximately 22 nt double-stranded miRNA duplexes [16-18]. The miRNA duplexes enter the miRNA-induced silencing complex (miRISC) and the Argonaute protein in the miRISC unwinds the mature strand from the passenger strand [19]. The mature strand is retained in the miRISC while the passenger strand is released and subsequently degraded.

The majority of miRNA activities [11] are proposed to be through interactions with the miRISC complex (Figure 1.2). Guided by the mature miRNA strand, miRISC binds target mRNAs, and thereby induces translational repression by blocking mRNA translation and degrading the mRNA [20, 21]. This binding is typically to the 3’ untranslated region (UTR) of mRNA; however, 5’-UTR binding and action is also reported [20, 21]. Much like siRNA
and siRISC recognition of mRNA, miRISC recognition of mRNA can be through perfect
base pairing of the miRNA with the mRNA strand. But, the binding of miRISC to target
mRNAs does not require perfect pairing, which is one factor allowing one miRNA strand to
recognize an array of mRNA. Although this promiscuity is thought to be a unique feature of
miRNA compared to siRNA (Table 1.1), there is significant overlap in the mechanism of
miRISC and siRISC function [22]. There is such overlap that miRNA delivery, particularly
when double-stranded approximately 21 nt sequences are delivered, that the terminology
si(mi)RNA or simply siRNA is recommended by some [23]. Although the similarity in at
least one mechanism of action may be true, we propose the difference between siRNA and
miRNA to be the intent to knock down an individual mRNA with siRNA and an array of
mRNAs with miRNA. In that, the delivery may converge, but the broad action desired is
the primary difference between the two types of small non-coding RNA.
Figure 1.1. Schematic representation of the biogenesis of miRNA. From genomic DNA, RNA is transcribed either as (1) an independent miRNA sequence or (2) an intron that is removed from mRNA. Following loop formation, the pre-miRNA is processed by DROSHA into pre-miRNA. The pre-miRNA is exported from the nucleus by Exportin5 before maturation by Dicer. Upon loading into the RISC complex, the miRNA duplex is unwound and the mature strand (red strand) retained within the miRISC complex. The passenger strand (green strand) is degraded.
Figure 1.2. Mechanism of natural miRNA-mRNA action. The roles of miRNA in protein production have been proposed to be through many routes. The majority of the actions inhibit protein production, but several modes of promotion of protein production have also been proposed. Binding of miRNA to DNA may promote transcription directly or through the recruitment of other factors. In addition, translation can be promoted by 5’UTR binding. Inhibitory action is likely through a combination of the mechanisms shown which include (1) direct mRNA degradation, (2) deadenylation, (3) initiation repression, (4) ribosomal stalling, (5) ribosomal drop-off, (6) co-translational degradation, and (7) translation repression following DNA binding.

Table 1.1. General properties of commonly described poly(nucleic acid) therapeutics.

<table>
<thead>
<tr>
<th>Property</th>
<th>miRNA</th>
<th>siRNA</th>
<th>ribozyme</th>
<th>antisense RNA/DNA</th>
<th>gene therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>~20 bp</td>
<td>~20 bp</td>
<td>≥10 bp</td>
<td>≥20 bp</td>
<td>>1 kbp</td>
</tr>
<tr>
<td>DNA or RNA</td>
<td>RNA</td>
<td>RNA</td>
<td>RNA</td>
<td>RNA/DNA</td>
<td>DNA</td>
</tr>
<tr>
<td>Structure</td>
<td>Single or double stranded</td>
<td>Double stranded</td>
<td>Single stranded</td>
<td>Single stranded</td>
<td>Double stranded</td>
</tr>
<tr>
<td>Proteins directly affected</td>
<td>many</td>
<td>one</td>
<td>one</td>
<td>one</td>
<td>one</td>
</tr>
<tr>
<td>Protein production change</td>
<td>downregulated or upregulated</td>
<td>downregulated</td>
<td>downregulated</td>
<td>downregulated</td>
<td>upregulated</td>
</tr>
</tbody>
</table>
The miRISC complex binding to mRNA can either repress or promote translation, although the latter appears to be rare [24]. Degradation of mRNA occurs primarily when prefect base-pairing is present and deadenylation and destabilization of mRNA that is not perfectly base-paired appears to predominate. Even when mRNA is not degraded, initiation may be repressed directly or the mRNA sequestered in regions of the cell (e.g., P-bodies) where low protein production takes place. If initiation takes place, the ribosomes stall during translation and may drop off the mRNA strand resulting in truncation of the protein. Also, proteases are recruited that degrade the protein as translation is underway. Through a combination of these mechanisms, miRNA has significant effect on the proteins produced by cells (Figure 1.2).

 Extracellular action is directed through exosome formation [25] and nuclear actions have been proposed [26-34]. The small RNAs have been implicated in direct interactions with DNA, particularly promoter regions, or alterations of the chromatin structure thus altering final mRNA production. Much still remains to be learned about miRNA biosynthesis and actions, but sufficient knowledge has been gained particularly in the expression of miRNAs
in varying tissues and diseases. As we start to understand how altered miRNA expression can be associated with or even cause diseases in humans, including cancer, central nervous system (CNS) disorders, infectious diseases, cardiovascular diseases, metabolic disorders, and autoimmune diseases [35-39], new opportunities for developing novel therapeutics targeting miRNA dysregulation will emerge [36]. To achieve the clinical reality, an understanding of how miRNA therapeutics can act is needed.

1.2 MicroRNA therapeutic approaches

Using high-throughput techniques including miRNA microarrays, unique miRNAs expression profiles are being confirmed to mediate critical pathogenic processes in human disease [37, 40, 41]. These findings are rapidly being translated into recommendations targeting miRNA dysregulation. To translate these discoveries to viable therapies, appropriate, stable molecules must be designed and chemically modified poly(nucleic acids) are typically utilized for miRNA therapy. In addition to stabilization, chemical modifications can also be used to augment the specific binding of miRNA to the miRISC
complex [42, 43]. The current generation of miRNA therapeutics all utilize one or more of the chemical modifications developed over the last 20 years.

1.2.1 Chemical modification to RNA for miRNA therapy

Naked RNA (Figure 1.3) has a very short half-life in blood for several reasons, primarily being degraded by the abundant ribonucleases present in blood stream [44]. Thus, the first generation antisense phosphodiester oligodeoxynucleotides (ODNs), without further chemical modification, were proven to be ineffective in therapeutic applications [45]. The stability of the antisense sequences is augmented using chemically modified oligonucleotides [46]. Chemical modifications (Figure 1.3) include phosphorothioate containing oligonucleotides [47], 2′-O-methyl- (2′-O-Me) or 2′-O-methoxyethyl-oligonucleotides (2′-O-MOE) [48], locked nucleic acid (LNA) oligonucleotides [49], peptide nucleic acids (PNA) [50], fluorine derivatives (FANA and 2′-F) and other chemical modifications [51]. Many of these modifications have evolved previous to the discovery of miRNA first with antisense therapies in the 1980s and 1990s [52] then with siRNA therapies [53-55].
Phosphorothioate ODNs were developed attempting to overcome the stability issue, in which one of the non-bridging oxygen in the phosphate group is replaced by sulfur [56].

This modification dramatically increases nuclease resistance for parenteral administration, eliciting sufficient RNAse H activation for the target RNA cleavage and desired binding to cellular and serum proteins for uptake, absorption and distribution [47, 57-59]. However, limitations include relatively short in vivo half-life, low binding affinity to RNA, and nonspecific inhibition of cell growth still hinders the application of phosphorothioate ODNs for therapeutic intervention [58].
Figure 1.3. Chemistry and structure of miRNA therapeutic molecules. RNA molecules (RNA) has several bonds that have been modified for stability including the alpha oxygen of phosphate (red), 4’ hydrogen (green), 2’ hydroxide (orange), 4’ hydrogen (purple), and the 1’ amide linkage to the base (blue). Peptide nucleic acids (PNAs) substitute a peptide bond at the 1’ amide linkage to the base. Phosphorothioates, methylphosphonates, and boranophosphates substitute a sulfur, methyl, and a borano group, respectively, for the alpha-oxygen of the phosphate. Locked nucleic acids (LNAs) add a secondary linkage between the 4’ carbon and the 2’ hydroxide while 2’-O-(2-methoxyethyl)- (2’-O-MOE), 2’-O-methyl- (2’-O-Me), and 2’-fluoro- (2’-F) RNAs substitutes less reactive groups for the 2’ hydroxyl group.
The introduction of 2′-O-methyl group to the ribose moiety in a phosphorothioate oligoribonucleotides increases binding stability and reduces the non-specific inhibitory effects on cell growth [48]. Similarly, 2′-O-methoxyethyl modification markedly protects phosphorothioate oligoribonucleotides from nuclease degradation and will likely slow down oligoribonucleotides clearance from tissues and cells. The greater stability brought in by 2′-O-methoxyethyl modification and the phosphorothioate backbone should allow for less frequent dosing and may avoid the need for continuous infusions [47].

Further utilizing modifications at the 2′-oxygen, LNAs are RNA analogs with the ribose moiety chemically locked by a bridge connecting the 2′-oxygen and 4′-carbon in a RNA-mimicking N-type (C3′-endo) conformation [60]. Miravirsen or SPC3649 (Santaris Pharma, Horsholm, Denmark), an LNA-based therapeutic used to treat hepatitis C virus (HCV) infection, progressed to Phase II clinical trials in 2010. Miravirsen efficiently suppresses HCV genotype 1a and 1b infections when administered to chimpanzees, with no evidence of apparent viral resistance or side effects [61]. The promising Miravirsen clinical results where a dose-dependent decrease in HCV RNA without evidence of resistance [62]
was observed suggests utilization of the LNA chemistry to develop miRNA therapeutics for the treatment of other diseases.

Peptide nucleic acids (PNA) are uncharged oligonucleotides analogues in which the sugar–phosphodiester backbone of DNA/RNA has been replaced by an achiral structure consisting of N-(2-aminoethyl)-glycine units [63-65]. PNAs exhibit high specificity and stability without generating unwanted toxicity [66]. Most importantly, PNAs frequently do not require assistance of delivery from transfection reagents due to the lack of charge. In addition, cell penetrating peptides can be linked with PNAs to enhance delivery using standard peptide chemistry [42, 67]. Naked PNA-based anti-miR-155 specifically inhibited miR-155 in cultured B cells as well as in mice. However, very high dosage (50 mg PNA/kg/day for 2 days in mice) was required for efficiency and the untargeted mode of delivery poses a challenge for systemic administration [66].

Depending on the expression status of the target miRNA, miRNA therapeutic approaches can be separated into two categories: (1) miRNA inhibition therapy when the miRNA is overexpressed and (2) miRNA replacement therapy when the miRNA is repressed. These
methods can be accomplished with small RNAs directly delivered (Figure 1.4) or by more conventional gene therapy (Table 1.1) approaches where plasmids or virus are delivered to express the therapeutic molecules. The gene therapy approach will not be further discussed as the limits of delivery are equivalent to those of other gene therapy approaches and the activity are similar to the systems described herein.

Figure 1.4. Therapeutic Strategies for miRNA activity. Delivered DNA or RNA (green) can act to augment, mimic miRNA activity or prevent activity of miRNA. MicroRNA can be produced by plasmid DNA (gene therapy) that is introduced into the cell, or by introducing agents to increase by translation promoters or cofactors, or delivered directly (in the forms of pri-, pre-, or mature with or without passenger). To prevent the activity of expressed miRNAs, miRNA binding with mRNA may be inhibited by masks of the binding of miRNA with the RISC complex may be inhibited with a sponge or a single binding anti-miRNA. Finally, translation may be directly repressed at the DNA level.
1.2.2 MiRNA inhibition therapy

When an upregulated miRNA contributes to disease pathology, miRNA inhibition therapy can be used to block the miRNAs repression of protein expression (Figure 1.4). Several methods have been used to inhibit miRNA repression of protein expression, but each involves the disruption of the miRISC complex. The most straightforward method utilizes oligonucleotides complementary to the miRNA mature strand, anti-miRNA oligonucleotides (AMOs), to inhibit interactions between miRISC proteins and the miRNA or miRISC and its target mRNAs. This approach mimic the idea of anti-sense DNA and RNA toward the mRNA strand preventing translation of the mRNA [68, 69]; however, the AMO is designed to bind the miRNA (not the mRNA), prevent degradation of the mRNA, and allow the mRNA to be translated. In order to achieve effective inhibition, chemical modifications are often used to enhance selective hybridization with the endogenous miRNAs.

Similar to AMO therapy, miRNA sponges seek to occupy the mature miRNA, but instead of delivering short sequences complementary to the miRNA mature strand, DNA
sequences, typically plasmids, expressing miRNA target mRNA in high copy number are transiently transfected in cells. This approach has recently been reported as similar to natural phenomena occurring in mammalian cells where circular RNA acts as a miRNA sponge inhibiting activity [70]. Those transcripts contain multiple binding sites to the miRNA of interest and saturate the miRISC complex repressing the activity toward natural mRNA [23]. Using this approach, miR-9 sponge, previously identified as having metastasis-promoting function in breast cancer cells, inhibited breast cancer metastasis formation [71]. However, due to limited control and homogeneity of transcripts expression, miRNA sponges could lead to serious unwanted side effect and thus is better suited for studying miRNAs function in cell culture assay *in vitro*.

In contrast to occupying the miRISC complex with decoys, miRNA masks were designed to complement the miRISC binding sites in the 3’ UTR of the target mRNA [72]. In zebrafish, this gene-specific, miRNA-interfering strategy prevented the miR-430 repression of transforming growth factor-β signaling [73]. The most significant advantage of this strategy lies in that signaling pathways regulated by a miRNA can be selectively blocked
by choice of sequence, but this strategy also requires the clear profile of miRNA target genes. Further, the miRNA masks are designed to have specificity for specific mRNA, and thus lose the ability to return protein production for many proteins other than the specific protein that's mRNA is masked.

1.2.3 MicroRNA replacement therapy

MiRNA replacement therapy supplements the lowered level of miRNAs with oligonucleotide mimics containing the same sequence as the mature endogenous miRNA, known as miRNA mimics. In order to achieve the same biological function as the naturally produced miRNA, mimics should possess the ability to enter the RISC complex and affect miRNA target mRNAs. Theoretically speaking, a single strand RNA molecule containing the same sequence, as the mature miRNA would work as a miRNA mimic. However, double stranded miRNA mimics composed of a guide strand and a passenger strand have 100 to 1000 fold higher potency compared with single stranded miRNA mimics [74]. The guide strand contains a sequence identical to the mature miRNA and the passenger strand sequence is complementary to the mature miRNA. For example, intratumoral injection of
cholesterol-conjugated miR-99a mimics significantly inhibited tumor growth in hepatocellular carcinoma-bearing nude mice [75]. In addition to the miRNA mimics having identical sequence as the endogenous mature miRNA, synthetic miRNA precursor mimics with longer sequence ranging from just a few additional nucleotides to full length pri-
miRNA have been proposed [76]. Since pri-miRNA is processed in the nucleus, significantly different strategies would be mandated for nuclear targeting of pri-miRNA that would not be necessary for pre-miRNA or mature miRNA. In any case, choosing the appropriate materials to augment the delivery of the miRNA appears to be one of the most important factors influencing the activity of the miRNA.

1.3 Synthetic materials for miRNA and anti-miRNA oligonucleotide delivery

Synthetic materials have demonstrated potential as effective carriers for DNA and siRNA [73, 74]. Under most circumstances, synthetic materials are cationic and condense negatively charged poly(nucleic acid)s through electrostatic interactions. Synthetic delivery systems have considerable advantages over viral-based vector due to the control of their molecular composition, simplified manufacturing, modification and analysis, tolerance for
cargo sizes, and relatively lower immunogenicity [75]. However, synthetic systems have relatively lower efficiency compared to viral vectors. Relative efficiency has been greatly improved by modifying particle size and surface properties to achieve specific biodistribution in vivo. Further, conjugating small molecule ligands to polymeric carrier targeting diseased cell surface specific receptors has been widely used to augment cell uptake in appropriate cells. We have summarized the current synthetic polymer based delivery system for miRNA in Table 1.2.
<table>
<thead>
<tr>
<th>Material</th>
<th>Disease model</th>
<th>Targeted miRNA</th>
<th>Therapeutic Approaches</th>
<th>Route</th>
<th>Refs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid-based delivery system: commercially available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>siPORT</td>
<td>Non-small cell lung cancer cells</td>
<td>miR-133b</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[77]</td>
</tr>
<tr>
<td>MaxSuppressor</td>
<td>Non-small cell lung cancer</td>
<td>MiR-34a/Let-7</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[78]</td>
</tr>
<tr>
<td>LipoTrust</td>
<td>Colorectal tumors</td>
<td>miR-143/miR-145</td>
<td>Replacement</td>
<td>Intratumoral/systemic</td>
<td>[79]</td>
</tr>
<tr>
<td>Lipid-based delivery system: newly explored</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98N12-5</td>
<td>Fat and cholesterol metabolism</td>
<td>miR-122</td>
<td>Inhibition</td>
<td>Systemic</td>
<td>[80]</td>
</tr>
<tr>
<td>DOTMA:cholesterol: TPGS lipoplexes</td>
<td>Non-small cell lung cancer cells</td>
<td>miR-133b</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[77]</td>
</tr>
<tr>
<td>DDAB:cholesterol:TPGS lipoplexes</td>
<td>Head and neck squamous cell carcinoma</td>
<td>miR-107</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[81]</td>
</tr>
<tr>
<td>GC4 scFv-targeted LPH nanoparticles</td>
<td>Murine B16F10 melanoma</td>
<td>miR-34a</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[82]</td>
</tr>
<tr>
<td>eRGD-targeted LPH nanoparticles</td>
<td>Antiangiogenesis</td>
<td>miR-296</td>
<td>Inhibition</td>
<td>Subcutaneous</td>
<td>[83]</td>
</tr>
<tr>
<td>iNOP-7</td>
<td>Fat and cholesterol metabolism</td>
<td>miR-122</td>
<td>Inhibition</td>
<td>Systemic</td>
<td>[84]</td>
</tr>
<tr>
<td>Tetraethylenepentamine-based polycation lipoplexes</td>
<td>Colon carcinoma</td>
<td>miR-499</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[85]</td>
</tr>
<tr>
<td>Polyethyleneimine (PEI)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEI</td>
<td>Colon carcinoma</td>
<td>miR-145/miR-33a</td>
<td>Replacement</td>
<td>Intratumoral/systemic</td>
<td>[86]</td>
</tr>
<tr>
<td>Polyurethane-short branch PEI</td>
<td>Lung adenocarcinoma; glioblastoma</td>
<td>miR145</td>
<td>Replacement</td>
<td>Systemic/intracranial</td>
<td>[87]</td>
</tr>
<tr>
<td>RVG-coupled PEI</td>
<td>Neuron diseases</td>
<td>miR-124a</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[88]</td>
</tr>
<tr>
<td>Dendrimers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly(amidoamine)</td>
<td>Glioblastoma</td>
<td>miR-21</td>
<td>Inhibition</td>
<td>Cell culture</td>
<td>[89, 90]</td>
</tr>
<tr>
<td>PLA-b-PDMAEMA</td>
<td>Glioma</td>
<td>miR-21</td>
<td>Inhibition</td>
<td>Cell culture</td>
<td>[91]</td>
</tr>
<tr>
<td>Poly(lactide-co-glycolide) (PLGA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonaarginine-modified PLGA nanoparticles</td>
<td>KB cells</td>
<td>miR-155</td>
<td>Replacement</td>
<td>Cell culture</td>
<td>[92]</td>
</tr>
<tr>
<td>Penetratin-modified PLGA nanoparticles</td>
<td>Pre-B cell lymphoma</td>
<td>miR-155</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[93]</td>
</tr>
<tr>
<td>Micelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mPEG-b-PCC-g-GEM-g-DC-g-CAT</td>
<td>Pancreatic cancer</td>
<td>miR-205</td>
<td>Replacement</td>
<td>Systemic</td>
<td>[94]</td>
</tr>
<tr>
<td>Natural polymers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atelocollagen</td>
<td>Colorectal cancer; Lymphoma; Prostate</td>
<td>miR-34a; miR-135b; miR-16</td>
<td>Replacement; Inhibition; Replacement</td>
<td>Intratumoral; intratumoral; systemic</td>
<td>[95-97]</td>
</tr>
</tbody>
</table>
1.4 Challenges for developing short oligonucleotides delivery system

Over the last several years, miRNA research has made amazingly rapid progress. But despite this, there is a belief that “RNAi is dead” [101] partly due to the departure from or reduction in emphasis on siRNA and miRNA by the pharmaceutical industry [102]. Few siRNA therapeutics and only two candidate miRNAs, SPC3649 (Santaris Pharma, Horsholm, Denmark) [103-108] a miR-122 antisense locked nucleic acid, and MRX34 (Mirna Therapeutics, Inc.) [109] a liposomal miR-34 mimic, have reached clinical trials. There is significant risk for investment by the pharmaceutical companies that is due to the biologically challenging therapeutic molecules, the expense of making and scaling up the therapeutics, and the unproven delivery systems. The field is still in the infancy and will take some time to mature. The costs and challenges will only become more reasonable. Of
all of the scientific (Table 1.3) and commercial challenges, the greatest challenge to translating siRNA and miRNA is delivery [101].

Table 1.3. Barriers and solutions to miRNA delivery (Adapted from Scholz and Wagner [110]).

<table>
<thead>
<tr>
<th>Barrier/Step to Administration</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>administration</td>
<td>local administration</td>
</tr>
<tr>
<td></td>
<td>i.v. administration</td>
</tr>
<tr>
<td>degradation and elimination</td>
<td>local administration</td>
</tr>
<tr>
<td></td>
<td>condensation to carrier</td>
</tr>
<tr>
<td></td>
<td>control of</td>
</tr>
<tr>
<td></td>
<td>• particle size</td>
</tr>
<tr>
<td></td>
<td>• particle shape</td>
</tr>
<tr>
<td></td>
<td>• particle charge</td>
</tr>
<tr>
<td></td>
<td>• steric stabilization</td>
</tr>
<tr>
<td></td>
<td>chemical modification</td>
</tr>
<tr>
<td>disease accumulation</td>
<td>local administration</td>
</tr>
<tr>
<td></td>
<td>targeting</td>
</tr>
<tr>
<td></td>
<td>particle size</td>
</tr>
<tr>
<td>cellular entry</td>
<td>targeting ligands</td>
</tr>
<tr>
<td></td>
<td>non-specific interactions</td>
</tr>
<tr>
<td></td>
<td>cell penetrating moieties</td>
</tr>
<tr>
<td>endosomal/lysosomal</td>
<td>endosomal escape</td>
</tr>
<tr>
<td></td>
<td>• lytic lipids</td>
</tr>
<tr>
<td></td>
<td>• fusogenic peptides</td>
</tr>
<tr>
<td></td>
<td>• fusogenic polymers</td>
</tr>
<tr>
<td></td>
<td>• osmotic lysis</td>
</tr>
<tr>
<td></td>
<td>endosomal arrest/lysosomal inhibition</td>
</tr>
<tr>
<td></td>
<td>MVB targeting</td>
</tr>
<tr>
<td>intracellular localization</td>
<td>MVB/P-body targeting for RISC activity</td>
</tr>
</tbody>
</table>
The inherent properties of miRNA are a significant challenge to delivery. Molecular stability before reaching the patient is a concern and this is often ignored. This is coupled with the cost and complexity of the production of the molecules and delivery systems. Once the miRNAs are administered, unprotected miRNAs are rapidly degraded by serum nucleases in bodily fluids. While chemical modifications protect miRNA, these molecules can impair specificity and potentially introducing off-target effects [55, 111]. This is compounded by the clearance of particulate systems even when they adequately protect the miRNA from degradation. When particles reach cells, the miRNA must separate for action to be possible. The limited separation of miRNA from the carrier has forced increased dose of miRNA to be active. Many current systems are focusing on using targeted drug delivery strategies to increase the amount of the drug that reaches the site, but targeting has a limited effect at increasing the total amount of drug that reaches the target organ [112].

The chemical and physical properties are not the only challenges as biologic properties of miRNA present difficulties that must be comprehended to properly deliver the molecules. The property of miRNA being able to regulate a network of genes without perfect pairing
also imposes the challenge of consistency and predictability of miRNA therapeutics.

Moreover, the presence of exogenous artificial miRNAs brings the risk of saturation of RNA processing machinery and cause untoward side effect [113, 114]. Most importantly, the expression level and function of miRNAs vary not only between normal and diseased tissues and organs but also between disease stages [115, 116]. For example, a total of 28 epigenetically regulated miRNAs were identified as being associated with poor patient survival when under expressed in neuroblastoma, among which miR-340 induced either differentiation or apoptosis in a cell context dependent manner [117]. This feature is challenging because it requires miRNA therapeutics to achieve both temporal and spatial control over biodistribution in vivo.

Even when active, small RNAs can have nonspecific effects that must be examined. Interferon response can occur following activation interferon stimulated genes [118-121]. When this happens, it leads to non-specific inhibition of protein synthesis coupled with non-specific degradation of endogenous mRNA [122]. Therefore, in addition to non-targeting RNA controls, one must rule out the possible interferon response when validating
the small RNA. This can be achieved by determining the expression levels of several key genes involved in the interferon response [123-126]. These responses can be controlled possibly by appropriate delivery and design of the therapeutics.

The efficiency of miRNA-based therapeutic molecules rely largely on the capacity of delivery agent to protect the oligonucleotides against serum degradation, accumulate to the diseased organ or tissue via active targeting, and elicit powerful therapeutic effect without causing unwanted side effects. The delivery of miRNA is limited to parenteral or local injection due to the lack of enteral uptake of RNA although other routes are being examined [127]. Depending upon the disease, the amount of miRNA reaching a target organ (or organs) is limited. The chemical challenges to stabilizing RNAs have been overcome by modification and complexation, but the stability of the RNAs does not improve cellular uptake and escape. The vast majority of delivered RNA never will enter a cell, let alone the target cells. Each of the systems described overcomes some of the numerous challenges, but much improvement is possible.
1.5 Dissertation outline and objectives

The overall objective of this dissertation is to test the hypothesis that systematic study of the assembly and disassembly process of delivery carrier will provide guidance for the development of more efficacious short oligonucleotides delivery technologies. Delivery of miRNAs has substantial therapeutic promise for the treatment of cancer, and we have specifically chosen glioblastoma as a model. Toward this goal, three specific aims are pursued in Chapters 2, 3 and 4.

The majority of gene delivery system uses synthetic polymer with positively charged functional groups for nucleic acid loading and condensation. One possible component of a clinical delivery system is one of several classes of cell penetrating peptides. Cell penetrating peptides are small peptides (6 to 30 amino acid residues) that have membrane translocation activity. They constitute an important category of transfection reagents due to their low toxicity and low immunogenicity [128]. Arginine-rich peptides are one of the most investigated categories of CPPs, and include TAT, protamine and oligoarginine. In particular, the guanidinium groups on arginine are efficient at mediating cellular entry
while maintaining low cytotoxicity [98]. Even though many delivery systems have been developed for double stranded siRNA delivery, it is unclear whether those systems will work seamlessly with single stranded miRNA or anti-miRNA. In Chapter 2, we set out to test the hypothesis that oligoarginine will have different physicochemical interactions with single-stranded anti-miRNA and double-stranded siRNA due to the conformation disparity between single and double-stranded oligonucleotides.

In Chapter 3, to further explore oligoarginine as intracellular anti-miRNAs carrier, we engineered a micelle-based delivery system with methoxy-poly(ethylene glycol-b-lactide-b-arginine) (mPEG-PLA-ss-R_x, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. We hypothesized that the interaction between charged groups on the micelle surface and miRNA will greatly affect the micelleplexes formation and cellular interaction process.

Micelleplexes formation (complexation) and gene release from the micelleplexes (decomplexation) are major events in polymeric nucleic acid delivery. The unpackaging of nucleic acid from micelleplexes requires thoughtful design considerations because the
release of nucleic acids payloads from carrier in cytoplasm is a necessary step for effective nucleic acids delivery [129]. In Chapter 4, we hypothesized that the polyarginine block will separate from the micelle in the presence of glutathione and the reducing intracellular environment in the cytoplasm and thus facilitate anti-miRNA dissociation from the delivery system.

1.6 References

[119] V. Hornung, M. Guenthner-Biller, C. Bourquin, A. Ablasser, M. Schlee, S. Uematsu, A. Noronha, M. Manoharan, S. Akira, A. de Fougerolles, S. Endres, G. Hartmann,

2 Arginine-rich, Cell Penetrating Peptide–anti-microRNA Complexes Decrease Glioblastoma Migration Potential

2.1 Abstract

MicroRNAs (miRNAs) are a class of gene regulators originating from non-coding endogenous RNAs. Altered expression, both up- and down-regulation, of miRNAs plays important roles in many human diseases. Correcting miRNA dysregulation by either inhibiting or restoring miRNA function may provide therapeutic benefit. One of the most effective approaches to suppress upregulated miRNAs is single stranded anti-miRNAs. Cell penetrating peptides (CPPs) have been applied for double stranded siRNA delivery. However, to our knowledge, few have examined CPP transfection efficiency with single stranded anti-miRNAs. For the first time, we compare R₈-mediated delivery efficiency of single stranded anti-miRNA and double stranded siRNA. The R₈ peptide condensed both siRNA and anti-miRNA. Greater than 50% of cells had anti-miRNA/R₈ complexes associated and in these cells 68% of anti-miRNA escapes the endosome/lysosome. Single-

stranded antisense miR-21 inhibitor (anti-miR-21) administered using the R₈ peptide elicited efficient downstream gene upregulation.

Glioblastoma cell migration was inhibited by 25% compared to the negative control group.

To our knowledge, this is the first demonstration of miRNA modulation with anti-miR-21/R₈ complexes, which has laid the groundwork for further exploring octaarginine as intracellular anti-miRNAs carrier.

2.2 Introduction

Glioblastoma multiforme (GBM) is a fatal brain tumor with an annual incidence of approximately 5 in 100,000 people, equivalent to 17,000 new diagnoses per year [1]. The deadly threat posed by GBM resides in the explosive growth characteristics, extremely invasive behavior, difficulty in treatment due to the blood-brain barrier, and intrinsic resistance to current therapies [2]. The current standard treatment for glioblastoma is surgery and radiotherapy combined with temozolomide. This approach doubles the 2-year survival rate to 27%, but overall prognosis remains poor [1]. New therapies that provide highly specific treatment based on disease pathology characteristics are urgently needed.
One possible new therapeutic option for GBM is microRNA (miRNA) therapy. MiRNAs are short noncoding RNAs that post-transcriptionally regulate gene expression of multiple target genes through seed pairing with 3’ untranslated region (UTR) of mRNA. By binding to the 3’ UTR as part of the miRISC complex, miRNAs block mRNA translation and lead to mRNA degradation [3-5]. MiRNAs play a causative role in the development of cancer [6]. Depending upon the specific miRNA, a gain or a loss of miRNA can occur in the tumor compared to normal tissue [7, 8].

Recently, the delivery of miRNA mimics to supplement lost miRNAs and anti-miRNAs to block elevated miRNAs has attracted enormous attention as new cancer therapies [9-11]. Some view miRNAs as the new “beacon of hope” for cancer patients [1, 12]. A recent analysis on clinical patient samples showed that miR-21 is consistently overexpressed in glioblastoma tumor cells, but not in adjacent normal brain parenchyma, and the miR-21 levels correlated significantly with the grade of glioma [13].
MiR-21 targets key matrix metalloproteinases (MMPs) regulators, promoting glioma invasiveness [14]. MiRNA-21 has also been shown to function as an oncogenic miRNA in glioblastoma through modulating a network of key tumor-suppressive pathways in glioblastoma cells [14-17]. Therefore, a new therapy targeting miR-21 could potentially slow glioma progression and kill the tumor cells. Due to the poor cellular uptake characteristics of polyanionic oligonucleotides, a formulation that can mediate sufficient cellular uptake is needed to achieve efficient miR-21 knockdown. In addition, minimizing toxicity associated with most cationic carriers for gene delivery, such as PEI and dendrimers, is paramount to achieve a clinical delivery system for miRNA [18].

One possible component of a clinical delivery system is one of several classes of cell penetrating peptides. Cell penetrating peptides are small peptides (6 to 30 amino acid residues) that have membrane translocation activity. They constitute an important category of transfection reagent due to their low toxicity and low immunogenicity [19]. Arginine-rich peptides are one of the most investigated categories of CPPs, and include TAT,
protamine and oligoarginine [20]. In particular, the guanidinium groups on arginine are efficient at mediating cellular entry while maintaining low cytotoxicity [21].

Aiming to lower the miR-21 level in glioblastoma, we set out to use octaarginine (R₈) to form complexes with single stranded anti-miR-21. Single stranded anti-miRNAs hybridize with mature miRNAs in the cytoplasm and prevent the miRNAs from recognizing their mRNA targets [22, 23]. Double stranded siRNA has been delivered using TAT and R₉ [24, 25]; however, little is known concerning the differences between double stranded siRNA and single stranded anti-miRNA influence interaction with CPPs. To this end, we sought to investigate the interactions of single stranded anti-miRNA with arginine-rich cell penetrating peptide. Further, we sought to examine anti-miR-21/R₈ complex efficiency of gene silencing and inhibiting glioblastoma cell migration. Given the high fatality rate of glioblastoma multiforme, an anti-miR-21/R₈ formulation with low toxicity could be easily administered by intracranial infusion to brain tumor patients or in the tumor void as a post-operative treatment after resection surgery suggesting that miRNA/R₈ complexes hold potential.
2.3 Materials and Methods

2.3.1 Materials

Acetyl-RRRRRRRR-amide (R_8) was synthesized by UIC research supply center.

MirVana™ miRNA-21 inhibitor (sequence:), miRNA inhibitor negative control #1, and Silencer® siRNA negative control #1 were purchased from Ambion (Austin, TX). Cy3-labeled anti-miRNA, Cy3-labeled siRNA and LysoTracker yellow HCK-123 were obtained from Invitrogen. Human glioblastoma U251 cell line was received from Dr. Lena Al-Harthi (Rush University). The cell line was maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetal bovine serum (FBS), 1% nonessential amino acids, 1 mM sodium pyruvate, 100 U/mL penicillin, and 100 U/mL streptomycin. Cells were incubated at 37 °C in humidified air and 5% CO$_2$.

2.3.2 Preparation and characterization of complexes

The anti-miRNA/R_8 or siRNA/R_8 was prepared by combining equal volumes of RNA and peptide in PBS to make complexes at varying positive to negative (+/-) charge ratios, vortexted for 15 sec, and then incubated at room temperature for 20 min before use. The
successful formation of anti-miR-21/R₈ or siRNA/R₈ complexes was confirmed by a gel
shift assay. Complexes were prepared by mixing single stranded anti-miRNA or double
stranded siRNA (100 pmol) and R₈ at predetermined positive to negative (+/-) charge ratios
in RNase free phosphate buffered saline (PBS) and incubated for 20 minutes at 25°C. The
resulting solutions were analyzed by electrophoresis using a 20% non-denaturing
acrylamide gel for 1 h at 100 V in 1× TBE buffer (89 mM Tris-borate, 2 mM EDTA).
Following ethidium bromide (0.5 µg/mL) staining, the gel was visualized using a gel
documentation system (GelDoc 2000, Bio-Rad, Hercules, CA). The size distribution and
zeta potential of the complexes were measured using a Nicomp 380 Zeta Potential/Particle
Sizer in RNAse free water (Particle Sizing Systems, Santa Barbara, CA).

2.3.3 Fluorescence quenching

The fluorescence quenching assay was conducted as previously reported [23]. Briefly, 60
pmol of Cy3-labeled anti-miRNA or Cy3-labeled siRNA was complexed with R₈ at
different charge ratios. Cy3-labeled anti-miRNA or Cy3-labeled siRNA without R₈ was
used to normalize (100% uncondensed) the loss of fluorescence intensity due to
condensation. Pure R₈ solution of the highest concentration in experimental groups was used as negative control. The samples were incubated for 20 to 30 mins after mixing before being transferred to a Corning black 96 well plate and measured on BioTek Synergy 2 Multi-Mode Microplate Reader (Winooski, VT).

2.3.4 Cell association and uptake

To measure cell association and uptake, 2×10⁵ cells were seeded in 12-well plate and incubated overnight. Complexes prepared at different charge ratios with the final anti-miRNA or siRNA concentration maintained constant at 100 nM were added to OPTI MEM medium to make the total media volume 1 mL prior to an addition incubation of 4 hours. Cells were then washed with cold PBS twice followed by trypsinization and centrifugation at 1500 rpm for 5 mins. The pellets were then washed twice with cold PBS and centrifugation before resuspending in 200 μL of 1% formaldehyde and analyzing on MoFlo Legacy cell sorter (Beckman Coulter, Brea, CA) at excitation 543 nm and emission 570 nm.
To further confirm cell internalization, U251 cells were seeded in Lab-Tek™ 8-chambered coverglass (Nunc; Thermo Fisher Scientific, Skokie, IL) at 3×10^4 cells per chamber in 200 µL growth media 24 hours before an experiment. The medium was exchanged with OPTI MEM and complexes were applied to the chamber. Four hours later, cells were rinsed twice with PBS. The nuclei and endosomes were stained with Hoechst 33258 for 5 min and 50 nM LysoTracker yellow for 15 min before CLSM imaging. CLSM images were acquired using a Zeiss LSM 510 META (Carl Zeiss, Germany) with a water immersion 63× objective (C-Apochromat, Carl Zeiss). Excitation wavelengths were 405 nm (Diode 405), 488 nm (argon laser) and 543 nm (HeNe laser) for Hoechst 33258, LysoTracker, and Cy3, respectively. In order to obtain the 3D information of the endosome escape efficiency, 20 slices for 20 cells were obtained with CLSM Z-stack and 20 cells were counted as previously reported [26, 27]. The colocalization ratio between Cy3-labeled anti-miRNA or Cy3-labeled siRNA and endosome was measured with Mender’s coefficient, M, using ImageJ, which calculates the percentage of red pixels (Cy3)
colocalizing with green pixels (lysoTracker) with an automatic threshold [28]. The endosome escape efficiency, ε_{ee}, was calculated, Equation 1.

$$\varepsilon_{ee} = (1 - M) \times 100\% \quad \text{Equation 1}$$

2.3.5 Transfection

U251 cells were seeded in a 24-well plate at a density of 1.4×10^5 cells/cm2 and cultivated with 1 mL of DMEM growth medium for 24 h until 60–70% confluent. The cells in each well were replaced with 250 µL OPTI MEM medium containing 27.5 µL of anti-miR-21/R$_8$ complexes solution (charge ratio = 50/1) with a final anti-miR-21 concentration is 55 nM. Four hours after transfection, media was replaced with fresh DMEM growth media.

2.3.6 Quantitative real-time PCR analysis

Total RNA was extracted using the TRIzol$^\text{®}$ reagent (Invitrogen) 24-hour post anti-miR-21/R$_8$ transfection. To maintain a constant RNA purity, PureLink$^\text{TM}$ RNA Mini Kit (Invitrogen) was used in combination with DNAse (Invitrogen) according to manufacturer’s instructions. High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) was used to reverse transcribe the purified RNA to cDNA. The PCR reactions
were performed on an Applied Biosystems StepOnePlus™ PCR machine. The PCR mixture was composed of 5 µL SYBR® Green PCR Master Mix (Applied Biosystems), 2 µL sequence specific primers (0.5 mM, final concentration) and 3 µL cDNA. The conditions for PCR reaction were previously reported [29]. Briefly, 95°C for 10 min followed by 40 cycles of 15 s of denaturation at 95°C and 60 s of annealing and elongation at 60°C. Primer sequences used in the PCR were as follows: Programmed cell death 4 (PDCD4) : 5’-CAGTTGGTGGCCAGTTATTG-3’ (sense), 5’-AGAAGCAGGTAGCTTATCCA-3’ (antisense); Serpin peptidase inhibitor, clade B (ovalbumin), member 5 (SERPINB5) : 5’-ACAGTGACTAATCCAGCACCAT-3’ (sense), 5’-ATTTGATAGGGCCACTCCCTTGTGTT-3’(anti-sense); Glyceraldehyde 3-phosphate dehydrogenase (GAPDH): 5’-TTC GAC AGT CAG CCG CAT CTT CTT-3’(sense), 5’-GCC CAA TAC GAC CAA ATC CGT TGA-3’(anti-sense). The relative gene expression level of the gene of interest was determined using delta-delta-Ct method normalized to the endogenous reference gene, GAPDH.
2.3.7 In vitro cell migration assay

The influence of anti-miR-21/R8 transfection on cell migration potential was measured using a wound healing assay [30]. Cells were seeded and transfected as previously described. Twenty-four hour post transfection, a wounding area was made along the cell monolayer using a 200 \(\mu \)L pipette tip. Cells were carefully washed with pre-warmed PBS without dislodging the cell monolayer followed by further incubation in DMEM growth medium for another 48 hours until images were taken. Cell migration was determined, Equation 2, by the recovery ratio, \(P \), of wound area at 48-hour post scratching, \(a_{48} \), relative to the initial wound area, \(a_0 \).

\[
P = \frac{(a_0 - a_{48})}{a_0} \times 100\% \quad \text{Equation 2}
\]

2.3.8 Statistical analysis

Data were presented as the mean plus or minus (\(\pm \)) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed. Statistics was determined using Student’s t-test or ANOVA using GraphPad Prism v.4.0 (GraphPad Software, San Diego, CA). Post hoc analysis was performed using Turkey’s test when \(p \)-value was less
than 0.05. Statistical significance was expressed as $P<0.05$ (single symbol), $P<0.01$ (double symbol), and $P<0.001$ (triple symbol).

2.4 Results and Discussion

To compare the condensing capacity of R$_8$ for single stranded anti-miRNA and double stranded siRNA, a gel shift assay was conducted by mixing 100 pmol of anti-miRNA or siRNA with R$_8$ at different positive to negative charge ratios (+/-). The R$_8$ peptide successfully formed complexes with both anti-miRNA and siRNA. The mobility of siRNA was retarded at lower charge ratio (Figure 2.1A) suggesting that double stranded siRNA was more readily interacting with the peptide.

To investigate whether there is difference between the binding behavior of double stranded siRNA and that of single stranded anti-miRNA with R$_8$, we used dye quenching assay. The fluorescence intensity of fluorophore-labeled oligonucleotides is quenched by the close spatial proximity in complexes where many oligonucleotides are compacted. The trend of fluorescence quenching is the same between anti-miRNA/R$_8$ and siRNA/R$_8$. However, at higher charge ratios, from 4:1 to 10:1, the extent of fluorescence quenching is
greater with double stranded siRNA than with single stranded anti-miRNA, suggesting there may be tighter binding between siRNA and the R₈ peptide (Figure 2.1B). The particle size of siRNA/R₈ was larger than anti-miRNA/R₈ (Figure 2.1C) at all charge ratios tested, indicating that the structural differences between single stranded anti-miRNA and double stranded siRNA brought differences in complexes physical properties. These differences include the charge density, size, and flexibility of the RNA molecules. The siRNA is present as a double helix with twice the charge in a given area.
Figure 2.1. Physicochemical characterization of complexes. (A) Mobility of siRNA (upper panel) and anti-miRNA (lower panel) was retarded in the presence of R₈ peptide above a threshold charge (+/-) ratio. (B) Fluorescence was also quenched above a threshold charge (+/-) ratio, indicating double stranded siRNA (■) and single stranded anti-miRNA (◆) were condensed by the R₈ peptide (mean ± S.E.M., n=3). Similarly, R₈ complex (C) diameters and (D) ζ potential were measured by dynamic light scattering (mean ± S.E.M., n=3) for siRNA/R₈ complexes (■) and anti-miRNA/R₈ complexes (◆) further indicating complex formation at the given charge (+/-) ratios (mean ± S.E.M., n=3).

Cell association of siRNA/CPP complexes depends on the complex conformation [24].

MiRNA associated with cells in a dose-dependent manner (Figure 2.2). Given the
differences between the anti-miRNA/R\textsubscript{8} and siRNA/R\textsubscript{8} complexes, we compared the cell association efficiency of the two types of complexes using flow cytometry. SiRNA/R\textsubscript{8} associated with cells to a greater extent than anti-miRNA/R\textsubscript{8} at all of the charge ratios tested (Figure 2.2), confirming our hypothesis that the charge density and flexibility differences between single and double-stranded RNA have an influence on their cell association. It is worth noting that there is no significant difference between the ζ potential of anti-miRNA/R\textsubscript{8} and siRNA/R\textsubscript{8}, which were near neutral (Figure 2.1D).

![Figure 2.2. Cell association of RNA/R\textsubscript{8} complexes.](image)

Figure 2.2. Cell association of RNA/R\textsubscript{8} complexes. Relative association of anti-miRNA/R\textsubscript{8} (blue bars) and siRNA/R\textsubscript{8} (red bars) with U251 glioblastoma cells after 4-hour interaction *in vitro* measured by flow cytometry (mean ± S.E.M., n=3).
To illustrate the cellular uptake of the complexes and not just surface association, we observed the presence of Cy3-labeled anti-miRNA/R₈ and Cy3-labeled siRNA/R₈ with confocal microscopy (Figure 2.3). The complexes showed punctate signal in the cytoplasm of the majority of cells. The punctate nature suggested endocytosis-mediated cellular uptake. Endocytosis and macropinocytosis have been reported as the main mechanisms for the cellular uptake of arginine-rich CPPs [31, 32]. Given the difference in cell association between anti-miRNA/R₈ and siRNA/R₈, we speculated that the differences in charge density and flexibility would also contribute to different interactions with the endosome, specifically escape and separation from the peptide.

We compared their endosome escape efficiency by obtaining the colocalization efficiency of Cy3-labeled anti-miRNA or Cy3-labeled siRNA with LysoTracker yellow stained endosomes. By determining the colocalization coefficient in every Z-stack slice, the endosome escape in the cytoplasm measured, while avoiding the bias of utilizing single slice. SiRNA/R₈ more efficiently escaped the endosomes compared to anti-miRNA/R₈, consistent with the cell association. However, we did not control for constant cell entry in
this experiment, *i.e.* the greater separation may be due to the greater amount of siRNA within the endosomes. This should be examined in more detail to better understand the influence of the properties of the complexes and their separation.
Figure 2.3. Evaluation of endosomal escape efficiencies of anti-miRNA/\(R_8\) and siRNA/\(R_8\). (A) Representative confocal micrographs of siRNA/\(R_8\) (left) and anti-miRNA/\(R_8\) (right) complex-endosome colocalization showing RNA (red), endosome (green), nuclei (blue), and the composite of the three pseudocolor images where the RNA concentration was 55 nM and mixed with \(R_8\) at a charge ratio of 50. (B) Quantitative comparison of endosome escape efficiency, \(E_{ee}\), between anti-miRNA/\(R_8\) and siRNA/\(R_8\). Endosome escape efficiency was calculated for 20 random, individual cells (\(p < 0.001\)).

MiRNA acts as gene regulators by binding to the 3’ untranslated region of targeted mRNA. One miRNA regulates a network of genes because the targeting region is in the untranslated region of the mRNA, is present on many mRNA, and does not require perfect base pairing. Tumor suppressor genes, PDCD4 and SERPINB5, have been reported as being miR-21 suppressed genes [15, 33]. They are transcriptionally regulated by miR-21, specifically, when miR-21 is present, the mRNA of PDCD4 and SERPINB5 degraded. Indirect detection of miRNA activity was chosen due to incomplete miRNA degradation when using anti-miRNAs [11].

Based on our results with cell association and internalization, we observed the best miR-21 knockdown effect when preparing the complexes at charge ratio of 50 to 1 (+/-). As such, formula complexes at this charge ratio were examined. Both PDCD4 and SERPINB5
mRNA levels were significantly increased after anti-miR-21/R₈ transfection comparing with the control groups, indicating successful anti-miR-21 intracellular delivery mediated by R₈ (Figure 2.4).
Figure 2.4. Indirect measurement of anti-miRNA activity by detecting the mRNA of downstream miR-21 targets. (A) PDCD4 and (B) SERPINB5 mRNA levels relative to GAPDH mRNA in cells treated with the R₈ peptide, control (ctrl) anti-miRNA/R₈ complexes, and anti-miRNA-21/R₈ complexes where the RNA concentration was 55 nM and mixed with R₈ at a charge ratio of 50 (mean±S.E.M.; n=3). Statistical significance compared to the anti-miRNA/R₈ group (†), ctrl anti-miRNA/R₈ group (‡), and R₈ treatment group (§) is presented as one (0.01 < p < 0.05), two (0.001 < p < 0.01), or three (p < 0.001) symbols.

The delivery of oligonucleotides in many circumstances is associated with cytotoxicity.

None of the complexes showed significant toxicity at the concentrations examined. (Figure
2.5) We, therefore, inferred that the change in mRNA levels were due to the inhibition of miRNA activity and not a result of cell death by some other mechanism. This was further confirmed by the use of the anti-miRNA control, which did not show a change in mRNA level.

Figure 2.5. Relative U251 survival (mitochondrial activity). After incubation with the anti-miR21/R8 complex (■) or control (ctrl) anti-miRNA/R8 complex (▲) for varying times (mean±S.E.M.; n=3).

The two selected miRNA-21 targeted genes, PDCD4 and SERPINB5, have also been reported to play inhibitory roles in cancer cell invasion and migration [34-36]. To examine the influence of knockdown of miR-21 by anti-miR-21/R8 complexes on cell migration, we used a wound-healing assay. In monolayer cell culture, the recovery of wound area was
compared at 72-hour post transfection. The 72-hour time point was chosen based upon preliminary experiments to give sufficient time for anti-miR-21 exert effects on target mRNAs and subsequent proteins expression. Anti-miR-21/R$_8$ complexes significantly inhibited cell migration by 25% compared with the negative control treated group (Figure 2.6), indicating the amount of anti-miR-21 transfected is biological active.
Figure 2.6. Inhibition of U251 cell migration after anti-miR-21/R₈ transfection. (A) Micrographs of U251 cells immediately after (0 hr) and 48 hours after wounding. (B) Wound recovery (P) measured 72 hours post transfection following treatment with R₈ peptide, ctrl anti-miRNA/R₈ complexes, or anti-miRNA-21/R₈ complexes where the RNA concentration was 55 nM and mixed with R₈ at a charge ratio of 50 (mean±S.E.M.; n=3). The wound recovery (P) of the three groups were normalized to the cell control group underwent wounding assay but no treatment. Statistical significance compared to the anti-miRNA/R₈ group (†) and control anti-miRNA/R₈ group (‡) treatment group is presented (0.001 < p < 0.01).

Within the last decade, the involvement of miRNA in human cancer oncogenesis and progression has become apparent [37]. Cancer is intimidating because of its
pharmacological complexity and constant development of resistance against therapy.

MiRNAs act in accordance with our current understanding of cancer as a “pathway disease” that presumably can only be successfully treated when simultaneously intervening with multiple oncogenic pathways [10].

Even though double stranded siRNA and single stranded anti-miRNA are both seen as RNAi technology, their mechanisms are different. RNAi mediated by double stranded siRNA aims to target one gene at a time by knocking down a specific mRNA. The nascent siRNA associates with Dicer, TRBP, and Argonaute 2 (Ago2) to form the RNA-Induced Silencing Complex (RISC) [38]. Once in RISC, one strand of the siRNA (the passenger strand) is degraded or discarded while the other strand (the guide strand) remains to guide the cleavage of the target mRNA by Ago2, a ribonuclease. Anti-miRNAs sterically block miRNA function by hybridizing and repressing the activity of a mature miRNA whether it exists in single-stranded form, double-stranded form with the natural passenger strand or bound to an Argonaute protein in the miRNA induced silencing complex (miRISC) [22].
Due to this difference in mechanisms and differential effect on a given mRNA, it would be quite difficult and less meaningful to directly compare the gene knockdown efficiency of anti-miRNA/R₈ with siRNA/R₈. Thus, we examined the ability of the peptide to condense anti-miRNA and how the complexes interact with cells, but the knockdown efficiency was not directly compared. Arginine-rich CPPs have been used to deliver double stranded siRNA, but the delivery of single stranded anti-miRNA via arginine-rich CPP in noncovalent manner has never been described to our knowledge. Therefore, our successful delivery of single stranded anti-miRNAs achieving migration repression and gene knockdown is significant and shows therapeutic potential.

Single stranded anti-miRNA is a flexible oligonucleotide that could have many different conformations while double stranded siRNA exists in A-form double helix, the most stable form of RNA secondary structures [39]. Thermodynamically speaking, it will cost more energy to stabilize a system composed of single stranded anti-miRNA than double stranded siRNA. This might explain why R₈ is more efficient at condensing double stranded siRNA than single stranded anti-miRNA in gel shift assay and fluorescence quenching assay. On
the other hand, the rigid structure of double stranded siRNA functions as skeleton and forces R\textsubscript{s} to interact alongside the double helix conformation. Interestingly, this discrepancy leads to different cell association and endosome escape efficiency. It has been reported that the polyplexes formed by circular plasmid DNA/CPPs and siRNA/CPPs differ significantly in terms of physicochemical properties, cellular uptake and endosome escape due to their molecular weight and structure differences [40]. The dramatic difference between anti-miRNA/R\textsubscript{s} and siRNA/R\textsubscript{s} reported here advanced our understanding about the interaction between CPPs and oligonucleotides. Special consideration should be given to the application of single stranded anti-miRNAs transfection with CPPs.

In addition, oligoarginines can be tailored for the establishment of a wide variety of miRNAs therapeutics delivery system since they can be easily encapsulated into or conjugated with other polymeric carrier. Our group has previously reported a matrix metalloproteinases-2 responsive hydrogel drug delivery system aiming for glioblastoma, a great option to combine with the result reported here [41, 42]. Although we have not proceed to in vivo animal experiment yet, Kim et al has shown that HER-2-specific
siRNA/R₁₅ complexes resulted in a marked reduction of SKOV-3 xenograft tumor growth in nude mice *in vivo* [43]. Further study is warranted to investigate the miRNA-21 silencing efficiency mediated by anti-miR-21/R₈ complexes *in vivo*.

2.5 Conclusion

For the first time, the difference between single stranded anti-miRNA/R₈ and double stranded siRNA/R₈ was understood by comparing their physicochemical property, cell association and endosome escape efficiency. Single stranded anti-miRNAs pose greater challenge for intracellular delivery via CPPs. In addition, effective *in vitro* miRNA-21 interference was achieved via anti-miR-21/R₈ complexes, resulting in significant inhibition on U251 cell migration, which warrants further exploration of oligoarginine as intracellular anti-miRNA carrier.

2.6 References

Suppression of the invasion and migration of cancer cells by SERPINB family genes and
their derived peptides, Oncol Rep, 27 (2012) 238-245.

Allgayer, MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor
Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer, Oncogene,

cell migration through inhibiting Rac1 and Cdc42, but not the RhoA GTPase, Cell Motil

[37] R. Garzon, G. Marcucci, C.M. Croce, Targeting microRNAs in cancer: rationale,

Nishikura, R. Shiekhattar, TRBP recruits the Dicer complex to Ago2 for microRNA

3 Charged Group Surface Accessibility Determines Micelleplexes Formation and Cellular Interaction

3.1 Abstract

Micelleplexes are a class of nucleic acid carriers that have gained acceptance due to their size, stability, and ability to synergistically carry small molecules. MicroRNAs (miRNAs) are small non-coding RNA gene regulator that consists of 19-22 nucleotides. Altered expression of miRNAs plays an important role in many human diseases. Using a model 22-nucleotide miRNA sequence, we investigated the interaction between charged groups on the micelle surface and miRNA. The model micelle system was formed from methoxy-poly(ethylene glycol-b-lactide) (mPEG-PLA) mixed with methoxy-poly(ethylene glycol-b-lactide-b-arginine) (mPEG-PLA-R_x, x = 8 or 15). Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Micelles were observed to have a core-shell conformation in the aqueous environment where the PLA block constituted the hydrophobic core, mPEG and oligoarginine formed a

hydrophilic corona. Significantly different thermodynamic behaviors were observed during the interaction of single stranded miRNA with micelles of different surface properties, and the resulting micelleplexes mediated substantial cellular association. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design.

3.2 Introduction

Over the last decade, miRNA has attracted significant attention due to their critical gene regulatory function in both normal biological process as well as various human diseases [1]. Micelleplexes, complexes formed by binding miRNA to micelles, have been designed for miRNA delivery. To form micelleplexes, miRNA is loaded onto the corona of the pre-formed micelles through multivalent ionic interactions [2-8]. Micelleplexes provide control over particle size through the hydrophobic interactions of the core and hydrophilic stability through the corona. To further develop and optimize micelleplexes for miRNA
delivery, we sought to better understand the physical processes governing the formation, structure, and stability of micelleplexes. While the physical properties of block copolymer micelles have been relatively well studied and understood, much less is known about the processes driving micelleplexes formation and stabilization [9]. For the first time, the effects of charged group surface presentation on miRNA binding are investigated from a thermodynamic standpoint to improve the understanding of the interactions of miRNA with micelles.

Modification of the surface of nanoparticles has significant effect on the stability and biologic interactions of the nanoparticles [10-12]. To promote miRNA-micelle interactions, surface-exposed charged groups have been placed on micelles [2]. Unfortunately, the hydrophilic corona-forming components of micelles also tend to interfere with the binding of miRNA. The hydrophilic corona-forming components, generally poly(ethylene glycol) (PEG), form a ‘hydration shell’ on nanoparticles excluding the adsorption of proteins resulting in steric stabilization of the micelle [13]. Even with this shell, it is clear that proteins interact with the surface of micelles and other nanoparticles [14-20]. However,
PEG on the surface also impairs cationic polymer interactions with nucleic acids due to decreased positive charge density, hydrogen bonding, and steric hindrance [21, 22]. Moreover, once the micelleplexes arrive at targeted tissue, PEG inhibits interactions between the micelleplexes and cells, reducing cellular uptake of the nanocarrier and resulting in a significant loss of transfection activity [23]. Design criteria that aid in the balance between binding of miRNA and steric stabilization would greatly improve the efficiency of micelleplex design.

3.3 Materials and Methods

3.3.1 Materials

Carboxyl terminal-mPEG2000-PLA3000 was purchased from Advanced Polymer Materials (Montreal, Canada). Ac-CR₃-NH₂ and Ac-CR₁₅-NH₂ peptides were synthesized by VCPBIO (Shenzhen, China). Heparin sulfate, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were obtained from Sigma Aldrich. 3-(2-pyridyldithio) propionyl hydrazide (PDPH) crosslinker was obtained from Fisher. Single stranded
anti-miRNA sequence 5’-AUCGAAUAGUCUGACUACAACU-3’ was synthesized by Integrated DNA Technologies (IDT) with standard RNA chemistry. Cy-5 labeled single stranded anti-miRNA was from Invitrogen as previously reported [24].

3.3.2 Polymer conjugate synthesis

Carboxyl terminal-mPEG2000-PLA3000, EDC and NHS (100, 40 and 24 mg, respectively) was dissolved in DMSO and stirred for 30 min, after which 14 mg PDPH crosslinker was added, thus modifying mPEG2000-PLA3000 with a pyridyldisulfide functional group at the previous carboxyl termini. Unreacted reagents were removed by dialysis against deionized water for 24 h with a molecular weight cut off of 1000 dialysis membrane. The sample was recovered from the dialysis tube and lyophilized to a white powder. Successful PDPH modification was confirmed with 1H NMR in CDCl$_3$ using a 400 MHz Bruker DPX-400 spectrometer (Bruker BioSpin Corp., Billerica, MA). To couple mPEG-PLA-PDPH with peptide, 40 mg of mPEG-PLA-PDPH and 10 mg CR$_{15}$ or 5.6 mg CR$_8$ (1:1 molar ratio) was dissolved in argon degased DMSO and reacted for 6 hours in argon environment before purification with a Sep-Pak C$_{18}$ column.
3.3.3 Micelleplex preparation

Micelles were prepared by the film hydration and sonication method as previously reported [25]. Briefly, 10 mg of copolymer was dissolved in 0.5 mL acetonitrile. Solvent was removed by rotovap to form a polymer matrix. RNAse free water (0.5 mL) was added to rehydrate the polymer film followed by sonication for 5 min to form empty micelles. To prepare micelleplexes, micelles were diluted with RNAse free water to the appropriate concentration and added dropwise to RNA solution (10 μM) and incubated for 15 min at room temperature.

3.3.4 Critical micelle concentration

Critical micelle concentration (CMC) was determined by using a pyrene fluorescence probe as previously reported [26]. Briefly, 100 μL of 1.2×10^{-5} M pyrene in acetone was added to a series of amber vials and evaporated in fume hood overnight to form a pyrene film. The final concentration of pyrene upon addition of 2 mL of polymer solution was 6×10^{-7} M. Different copolymer micelle solutions in water (0.1 – 500 mg/L) were added to vials containing pyrene film. The solutions were incubated at room temperature for 24 h on
a shaker before fluorescence measurement. The emission wavelength was set at 390 nm and
the excitation spectrum was scanned from 300 nm to 400 nm using a
spectrofluorophotometer (RF 1501, Shimadzu, Japan) and the intensity ratio I_{335}/I_{333} against
log concentration was plotted. The CMC value was determined from the onset of the
change in intensity ratio at high polymer concentrations as previously reported [27].

3.3.5 Particle sizing and ζ-potential

Particle size and ζ-potential were measured in RNase free water to obtain the parameters
before RNA complexation, using a Nicomp 380 Zeta Potential/Particle Sizer (Particle
Sizing Systems, Santa Barbara, CA). The data represent the mean plus or minus (±) the
standard deviation (SD) from three independent experiments. To mimic a physiologically
relevant conditions as previously reported [28]. The particle size and ζ-potential of
micelleplexes were measured in 10 mM HEPES buffer (pH 7.4) following RNA
complexation. The data represent mean plus or minus (±) the standard deviation (SD) from
three independent experiments.
3.3.6 Morphology characterization

The morphology of micelles and micelleplexes were analyzed by transmission electron microscopy (TEM, JEM-1220, JEOL Ltd., Japan). A drop of micelles (1 mg/mL) was placed on a carbon-coated 300 mesh copper grid. The sample was negatively stained with 2% (w/v) uranyl acetate solution, and then dried at room temperature.

3.3.7 Gel shift assay

The successful formation of micelleplexes was confirmed by a gel shift assay. Micelleplexes were prepared as described above at predetermined positive to negative (+/-) charge ratios. The resulting micelleplexes were analyzed by electrophoresis using a 20% non-denaturing polyacrylamide gel for 1 h at 80 V in TBE buffer (89 mM Tris-borate, 2 mM EDTA). Following SYBR gold staining, the gel was visualized using a gel documentation system (GelDoc 2000, Bio-Rad, Hercules, CA).

3.3.8 Heparin competition

With the RNA amount fixed, micelleplexes were prepared as described above at predetermined positive to negative (+/-) charge ratios. To compare the ability of different
micelleplexes in resisting negatively charged macromolecule competition, appropriate amount of heparin solution (2 mg/mL) was added at 4:1 and 8:1 heparin to RNA weight ratios. The RNA was visualized by running the samples in 20% non-denaturing polyacrylamide gel as described in gel shift assay.

3.3.9 Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) was carried out on a VP-ITC from Microcal (GE Healthcare Bio-Sciences, Milwaukee, WI, USA) with an active cell volume of 1.4 mL using a stirring rate of 307 rpm [29]. RNAse free water was degassed under vacuum for 10 min and equilibrated to room temperature before use. Measurements were performed at 25°C. The baseline was recorded by titrating an equivalent micelle concentration into water. All experiments were performed by titrating a 3 µL of micelles containing 4.0 mM arginines into the sample cell containing 5 µM anti-miRNA (0.11 mM phosphate). An initial data point from 2 µL first injection was always removed from data analysis to avoid systematic error from syringe filling. The following injections were maintained at 3 µL at intervals of 200 s until the anti-miRNA was saturated with micelles. Injection heat caused
by anti-miRNA binding to micelles during each injection was obtained from the integral of the calorimetric signal after subtraction of the baseline. ITC data were analyzed with Microcal, LLC ITC package for Origin® version 7.0. Each experiment was repeated at least once to ensure reproducibility. The peaks were integrated and corrected with a single-site-binding model. The thermodynamic parameters binding sites, binding constant \(K \), enthalpy \((\Delta H) \), entropy \((\Delta S) \) were reported.

3.3.10 Cellular association

The cellular association was determined as we previously reported [30]. Briefly, \(2 \times 10^5 \) U251 cells were seeded in 12-well plates and incubated overnight. Micelleplexes were prepared at a charge ratio 30:1 with the final anti-miRNA concentration maintained constant at 100 nM. Micelleplexes were added to cells to make the total media volume 1 mL. Following addition of micelleplexes to cells, cells were incubated for an additional 4 h. Cells were then washed with cold PBS twice followed by trypsinization and centrifugation at 1500 rpm for 5 min. The pellets were then washed twice with cold PBS and centrifugation before resuspending in 200 µL of 1% formaldehyde and analyzing on Becton
Dickinson Fortessa flow cytometer (San Jose, CA) at excitation 543 nm and emission 570 nm.

3.3.11 Micelle Modeling

We modeled by atomistic molecular dynamics (MD) simulation of mPEG-PLA-R₈ mixed with mPEG-PLA copolymers in water with different aggregation numbers, \(N_{agg} \), as previously described [26]. Based upon this model, the number of total copolymer monomers to produce a micelle with a size observed by DLS and TEM is between 60 and 100. Using this estimate and the neutral to slightly positive zeta potential of the micelles, it would be expected that the number of charged phosphate groups would match those of the charged arginine groups, or be slightly below unity. Therefore, the number of oligoarginines and miRNA loading of the micelles was estimated.

3.4 Result and Discussion

Successful polymer conjugation was confirmed by \(^1\)H NMR (Figure 3.1) in DMSO-\(d_6\) [8]. The \(R_x \) conjugation rate was calculated based on the intensity ratio between the proton peak of the guanidine group (\(\delta 7.43, 4H \)) and that of the PLA segment (\(\delta 5.19, 1H \)).
conjugation rate was controlled by varying functional group molar ratios. For example, a conjugation rate of approximately 28% (relative to total polymer) was achieved when the molar ratio of pyridyldisulfide group to sulfhydryl group in peptide was 1:1, and a 14% conjugation rate was achieved with a molar ratio of 2:1.

Figure 3.1. 1H NMR spectra of (A) mPEG-PLA-COOH (B) CR$_x$ (C) mPEG-PLA-R$_8$ (D) mPEG-PLA-R$_{15}^{\text{Low}}$ (E) mPEG-PLA-R$_{15}^{\text{High}}$. The purified products have characteristic peaks from both PLA segment (a, δ 5.19, 1H) and guanidine group (b, δ 7.43, 4H) in R$_x$.
To elucidate the effect of charged group surface presentation of micelles on miRNA loading, stability and cellular uptake, we engineered polymeric micelles that are composed of hydrophilic oligoarginine (R_x, x=8 or 15) conjugated directly to the hydrophobic block of the mPEG-b-PLA block copolymer forming a triblock copolymer, mPEG-PLA-R_x [8] based upon our previous experience with the R₈ oligoarginine [24], the expected extended lengths of the oligoarginine and poly(ethylene glycol), and previously published research [8, 31]. We hypothesized that the mPEG-PLA-R_x micelles would present the oligoarginine block exposed on the surface, dependent upon the length of the oligoarginine block and the poly(ethylene glycol) block. An alternative structure where the oligoarginine block were placed on the poly(ethylene glycol) block, PLA-PEG-R_x, could also be examined and will be in the future to determine if these structures are presented as described for poly(lysine) [32, 33] or oriented toward the interior of the structure [11]. Further, we hypothesized that the surface presentation of the oligoarginine would influence the miRNA-oligoarginine interactions and cellular uptake. In this way, the charged group was accessible for loading after formation, but the presentation at the surface could be controlled unlike systems that
bury the charged groups during the formation of the micelle and limit the loading to the point of formation of the particles [34].

Micelles, mPEG-PLA-R₈, mPEG-PLA-R₁₅\(^{\text{Low}}\), and mPEG-PLA-R₁₅\(^{\text{High}}\), with arginine block conjugation density (proportion of oligoarginine modified triblock copolymer to total mPEG-PLA polymer) of 27%, 14% and 28% (mol%), respectively, were synthesized by coupling mPEG-PLA with CRₓ through disulfide bond exchange reaction. For the purpose of easily distinguishing 14% and 28% R₁₅ substituted mPEG-PLA-R₁₅ micelles, we denote them as mPEG-PLA-R₁₅\(^{\text{Low}}\) and mPEG-PLA-R₁₅\(^{\text{High}}\), respectively. All of the mPEG-PLA-Rₓ copolymers have similar critical micelle concentration (CMC) to the mPEG-PLA polymer (Figure 3.2).

Table 3.1. Micelle particle size and ζ-potential.

<table>
<thead>
<tr>
<th>Peptide conjugation (mol%)</th>
<th>Micelle size (nm)</th>
<th>Micelle ζ-potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPEG-PLA-R₈</td>
<td>27%</td>
<td>20.13±0.42</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅(^{\text{Low}})</td>
<td>14%</td>
<td>25.00±1.51</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅(^{\text{High}})</td>
<td>28%</td>
<td>20.43±1.50</td>
</tr>
</tbody>
</table>
Figure 3.2. mPEG-PLA-Rₙ copolymers have CMC similar to mPEG-PLA. CMC plots of (A) mPEG-PLA (B) mPEG-PLA-R₈ (C) mPEG-PLA-R₁₅ₖₑ₉ and (D) mPEG-PLA-R₁₅ₕᵢᵣ₉. Data represent mean ± standard deviation, N=3.

The micelles from each group had similar diameter (Table 3.1). The ζ-potential of mPEG-PLA-R₈ micelles (30.76±1.16 nm) was similar to mPEG-PLA-R₁₅ₕᵢᵣ₉ (30.46±1.88 nm), suggesting that only a portion of the oligoarginine contributed directly to the surface charge of the micelles. This was further supported by the ζ-potential of mPEG-PLA-R₈ and mPEG-PLA-R₁₅ₕᵢᵣ₉ micelles being higher than mPEG-PLA-R₁₅ₖₑ₉ micelles (19.65±4.7 nm).
nm). In this way, we produced micelles with similar size, oligoarginine content (mPEG-PLA-R_{8} and mPEG-PLA-R_{15}^{\text{Low}}) and charge (mPEG-PLA-R_{8} and mPEG-PLA-R_{15}^{\text{High}}). The morphology of mPEG-PLA-R_{8}, mPEG-PLA-R_{15}^{\text{Low}} and mPEG-PLA-R_{15}^{\text{High}} micelles and micelleplexes were observed with transmission electron microscope, all of which demonstrated spherical shape and size similar to DLS measurements (Figure 3.3).

![Figure 3.3. TEM images of mPEG-PLA-R_{8}, mPEG-PLA-R_{15}^{\text{Low}} and mPEG-PLA-R_{15}^{\text{High}} micelles and micelleplexes (+/- charge ratio 30).](image)

To understand the conformation of the micelles, micelles were prepared in D_{2}O for solution-phase NMR analysis [35-37]. In this technique, the constituents in the aqueous phase are readily detected but the hydrophobic-phase constituents have repressed signature.
In aqueous solution, the triblock mPEG-b-PLA-R$_x$ polymers formed micelles where the PLA hydrophobic chains collapse, with a disappearance of the PLA proton peaks, to form a hydrophobic core while the PEG chains and the R$_x$ block constitute a hydrophilic corona. While the PLA protons were not detected in D$_2$O, the terminal methoxyl protons ($\delta = 3.40, 3H$) from mPEG chains (Figure 3.4B), the d methylene protons from arginine side chain ($\delta = 3.20, 2H$) and the a proton ($\delta = 4.40, 1H$, Figure 3.4B) [8] in the peptide backbone of R$_x$ blocks remained detectable in the 1H NMR spectrum. The prominent peaks ($\delta = 4.7$ ppm and $\delta = 3.7$ ppm) correspond to the solvent and methylene proton of poly(ethylene glycol), respectively. Based upon atomistic molecular dynamics simulation (Figure 3.5), the number of total copolymer monomers to produce a micelle with a size observed by DLS and TEM is between 60 and 100 monomers. Using this estimate and the neutral to slightly positive ζ-potential of the micelles, it would be expected that the number of charged phosphate groups would match those of the charged arginine groups, or be slightly below unity. Therefore, the number of oligoarginines and miRNA loading of the micelles was estimated (Table 3.2). This suggested the presence of oligoarginine block on the micelles surface, i.e.
the aqueous phase. Based upon this, each of the micelles presented a portion of the oligoarginine on the surface with access to the aqueous environment.

Figure 3.4. Micelles properties and surface oligoarginine presence. (A) Schematic representation of the micelles formed and the relevant molecular weights of the components. (B) 1H NMR analysis of the peptides (CR$_8$ and CR$_{15}$) and micelles (mPEG-PLA-R$_8$, mPEG-PLA-R$_{15}^{\text{Low}}$, and mPEG-PLA-R$_{15}^{\text{High}}$) showing the arginine a proton (1; δ 4.40, 1H), d protons (2; δ 3.20, 2H), or ω-terminal methoxyl protons (arrow; δ 3.40, 3H).
Table 3.2. Estimates of the number of oligo-arginine peptides and miRNA associated with micelles.

<table>
<thead>
<tr>
<th>N_{agg} (copolymer/micelle)</th>
<th>60</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_Z (oligoarginine/micelle or miRNA/micelle)</td>
<td>N_{Rx}</td>
<td>N_{miRNA}</td>
</tr>
<tr>
<td>mPEG-PLA-R_8</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>mPEG-PLA-R_{15}^{Low}</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>mPEG-PLA-R_{15}^{High}</td>
<td>17</td>
<td>11</td>
</tr>
</tbody>
</table>
Figure 3.5. Molecular dynamics simulation of mPEG-PLA-R₈ micelle. Each monomer consisted of a methoxy-poly(ethylene-glycol)(mPEG; MW ~ 2,000 g/mol; blue) block coupled to the α-hydroxide of poly(lactide) (PLA; MW ~ 3,000 g/mol; red). As in the experiments, 28% of total monomers were modified with oligoarginine (R₈; green) on the ω-carboxylate of the PLA block. The micelles were prepared with total 60 monomers.

Being present in the aqueous phase, however, does not indicate that the oligoarginine is free to interact with biomolecules in the presence of the PEG corona. To determine the ability of the micelles to interact with miRNA, the gel shift assay was conducted (Figure 3.6A). mPEG-PLA-R₈ micelles were able to fully retard miRNA mobility only at or above
a positive to negative (+/-) charge ratio (arginine to nucleotide) of 30, while

mPEG-PLA-R_{15}^{Low} and mPEG-PLA-R_{15}^{High} fully retarded miRNA mobility at a charge ratio of 5. The lower charge ratio needed to fully bind miRNA further suggested that the mPEG-PLA-R_{15} micelles contain arginine that is more accessible to the surface for biomolecular interactions. This is further supported by the fact that mPEG-PLA-R_{15}^{Low} micelles interact with the miRNA as efficiently as the mPEG-PLA-R_{15}^{High} despite the fact that there is approximately half the total arginine present. No significant difference was observed for miRNA interactions with mPEG-PLA-R_{15}^{Low} and mPEG-PLA-R_{15}^{High} at low charge ratios (Figure 3.6B). Based upon the interactions with miRNA, the longer oligoarginine chains are able to more readily interact with biomolecules at the surface of the micelles regardless of overall charge, i.e. zeta potential, of the micelle. This is consistent with observation that PEGylation of cationic polymers generally deteriorates a polymer’s ability to interact with DNA and RNA [22].
Figure 3.6. MiRNA complexation with micelles occurs at lower charge ratios for longer oligoarginine regardless of oligoarginine density. (A) mPEG-PLA-R$_8$, mPEG-PLA-R$_{15}^{\text{Low}}$, and mPEG-PLA-R$_{15}^{\text{High}}$ complexation with miRNA at +/- charge ratios of 1, 5, 10 and 30 (B) mPEG-PLA-R$_{15}^{\text{Low}}$ and mPEG-PLA-R$_{15}^{\text{High}}$ complexation with miRNA at +/- charge ratios 1, 1.5, 2 and 30.

To better characterize the interactions and gain information about the events leading to miRNA-micelle interactions, thermodynamic analysis was utilized [29, 38-40]. An initial endothermic peak was observed for mPEG-PLA-R$_8$, which suggests that a molecular rearrangement took place prior to the ionic interactions between the peptides and the miRNA (Figure 3.7). Unlike mPEG-PLA-R$_8$, only exothermic processes were observed when miRNA interacts with mPEG-PLA-R$_{15}^{\text{Low}}$ or mPEG-PLA-R$_{15}^{\text{High}}$. Only the shorter arginine-containing micelles, mPEG-PLA-R$_8$, had an unfavorable entropic contribution while all micelles exhibited favorable enthalpy energy (Table 3.3). Water molecules associated with PEG creates a “hydration shell” where the water molecules are oriented in
a structured manner surrounding the micelles [13]. The entropic loss (-TΔS > 0) during miRNA binding to mPEG-PLA-R₈ process might result from the disturbance of the hydration shell surrounding mPEG-PLA-R₈ in conjunction with unfavorable conformational changes necessary to accommodate the miRNA chain. Because the longer oligoarginine peptides are more accessible, the unfavorable rearrangements and the disruption of the ordered water layer are not necessary to accommodate the miRNA. The interactions of mPEG-PLA-R₁₅Low and mPEG-PLA-R₁₅High with miRNA are very similar to hyperbranched polyethylenimine (PEI) interactions with double strand siRNA [29], suggesting that arginine clusters on the micelle surface could interact with miRNA in similar manner to PEI.
Figure 3.7. Thermodynamic profiles of single stranded miRNA binding to micelles indicate different interactions occur dependent upon oligoarginine length and density. (A) mPEG-PLA-R₈ (B) mPEG-PLA-R₁₅Low (C) mPEG-PLA-R₁₅High (D) Thermodynamic parameters, derived from ITC, of miRNA binding to mPEG-PLA-R₈, mPEG-PLA-R₁₅Low, and mPEG-PLA-R₁₅High micelles.

Table 3.3. Thermodynamic parameters for the binding between different micelles and anti-miRNA.

<table>
<thead>
<tr>
<th></th>
<th>N (sites/arginine)</th>
<th>K (x10³)</th>
<th>ΔH (kcal/mol)</th>
<th>ΔS (cal/mol/deg)</th>
<th>ΔG (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPEG-PLA-R₈</td>
<td>0.32±0.05</td>
<td>21.5±2.82</td>
<td>-7.74±1.48</td>
<td>-6.21</td>
<td>-5.88</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅Low</td>
<td>0.41±0.22</td>
<td>18.8±9.53</td>
<td>-2.41±1.56</td>
<td>11.49</td>
<td>-5.83</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅High</td>
<td>0.73±0.15</td>
<td>42.2±26.2</td>
<td>-0.40±0.11</td>
<td>19.83</td>
<td>-6.31</td>
</tr>
</tbody>
</table>

The entropic energy that was needed to form the complexes was coupled with a lower number of arginines that could interact with the miRNA. The mPEG-PLA-R₈ micelles only
had about 2.6 arginines per peptide available to interact while the mPEG-PLA-R₁₅Low and mPEG-PLA-R₁₅High micelles had 6.2 or 11.0 arginines per peptide available to interact with miRNA, respectively. The differences in available arginines do not mirror the charge on the micelles (Table 3.4), which were all positive, and the density of peptide being the only factor influencing the \(\zeta\)-potential. This suggests that the available content of arginine increased on the surface as the amount of peptide in the micelles increased.

<table>
<thead>
<tr>
<th>Peptide conjugation (mol%)</th>
<th>Micelleplex size (nm)</th>
<th>Micelleplex (\zeta)-potential (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mPEG-PLA-R₈</td>
<td>27%</td>
<td>21.6±1.25</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅Low</td>
<td>14%</td>
<td>22.37±4.50</td>
</tr>
<tr>
<td>mPEG-PLA-R₁₅High</td>
<td>28%</td>
<td>19.9±2.98</td>
</tr>
</tbody>
</table>

In addition to the role of the PEG corona shielding the charged groups during complexation, the PEG corona is also thought to influence the stability of the complexes by altering the surface accessibility of charged biomolecules, particularly anionic biomacromolecules that compete with negatively charged nucleic acids on the micelle
surface. In all micelles, the micelleplex \(\zeta \)-potentials were neutral compared to the original highly positive zeta potential. Using the heparin sulfate competition assay to mimic the natural anionic macromolecules, shorter oligoarginine-containing micelles, mPEG-PLA-R\(_8\), were not able to condense miRNA as tightly as longer oligoarginine containing micelles, mPEG-PLA-R\(_{15}^{\text{Low}}\) and mPEG-PLA-R\(_{15}^{\text{High}}\). mPEG-PLA-R\(_x\) micelleplexes migrate in the polyacrylamide gel, but to a lesser extent than miRNA control due to the charge neutralization and the size of the micelleplexes (Figure 3.6). At a charge ratio of 20, heparin did not dissociate miRNA from mPEG-PLA-R\(_8\) micelles at a heparin to miRNA weight ratio of 4:1 (Figure 3.8A), but based upon the diminished dye exclusion the miRNA appears to be less tightly bound to the micelleplex. The association between miRNAs and micelles was similarly loosened in mPEG-PLA-R\(_{15}^{\text{Low}}\) and mPEG-PLA-R\(_{15}^{\text{High}}\) micelleplexes in the presence of 8:1 heparin to miRNA. At a charge ratio of 30, heparin was unable to compete with miRNA or loosen the interactions. This suggests that the poorly accessible arginine content in mPEG-PLA-R\(_8\) was less available for interactions, but once the interaction was formed the interaction was stable to heparin competition.
mPEG-PLA-R_{15}^{\text{Low}} and mPEG-PLA-R_{15}^{\text{High}} have longer peptide sequence and appear to present a greater proportion of miRNAs closer to the surface than in mPEG-PLA-R_{8} micelleplexes, and are thus less resistant to heparin competition. At a higher charge ratio of 30 to 1, all micelles were able to maintain the interaction with miRNA (Figure 3.8B), suggesting that the interaction was stabilized with further ionic crosslinking. This observation agrees with others who observed that the macromolecules that freely interact with RNA are not necessarily the most stable [41].

Figure 3.8. Micelleplexes are stable to heparin competition. Micelleplexes were prepared at (A) +/- charge ratio 20 or (B) 30 and incubated with heparin at a heparin to miRNA weight ratio (w/w) of 0:1, 4:1, or 8:1 prior to electrophoresis and staining.
Finally, surface exposed charged groups on the micelles are believed to play key roles in their cellular interactions, with neutral particles (zeta potential -10 to +10 mV) having limited non-specific cellular interactions [11, 42, 43]. mPEG-PLA-R₈ and mPEG-PLA-R₁₅^{High} micelles had higher ζ-potential than mPEG-PLA-R₁₅^{Low}, but the ζ-potential range of all three micelleplexes were generally neutral after miRNA complexation (Table 3.1 & Table 3.4). mPEG-PLA-R₁₅^{Low} and mPEG-PLA-R₁₅^{High} micelleplexes showed significantly more cellular association than mPEG-PLA-R₈ micelleplexes (Figure 3.9). With the similar charge and size, the oligoarginine available on the micelle surface was expected to influence the ability of micelles to associate with or enter cells, but the total arginine and surface charge was not directly related to cellular interaction [24, 44, 45]. Only the available arginine content on the micelle surface correlated with the ability of the micelles to interact with cells. This further supports the idea that the oligoarginine on the mPEG-PLA-R₁₅ micelles was more available for interactions.

Despite the fact that mPEG-PLA-R₁₅^{Low} and mPEG-PLA-R₁₅^{High} micelleplexes showed
significantly more cellular association than mPEG-PLA-R₈ micelleplexes in the in vitro cellular association testing (Figure 3.9), the tightness, stability and negligible unspecific cellular association of mPEG-PLA-R₈ micelleplexes make it a great candidate for developing targeted nanocarrier in vivo. By modifying the PEG terminal with disease or cell type specific targeting moieties (antibodies, ligands and aptamers), targeted PEG-PLA-R₈ micelleplexes could avoid unspecific delivery, mediate active cellular uptake toward diseased cells and effectively release the cargo in the cell. More importantly, such targeted nanocarrier could decrease the dosage of anti-miRNAs needed to achieve effective silencing and minimizing off-target effect.
Figure 3.9. Cellular association mediated by different micelleplexes. (A) The mean fluorescence intensity observed on U251 glioma cells following interaction with mPEG-PLA-R₈, mPEG-PLA-R₁₅Low, and mPEG-PLA-R₁₅High micelleplexes or untreated cells or Cy3-labeled miRNA. (B) The relative population (%) of cells associated with the mPEG-PLA-R₈, mPEG-PLA-R₁₅Low, and mPEG-PLA-R₁₅High micelleplexes or untreated cells or Cy3-labeled miRNA. N=3, mean ± standard error of the mean.

The development of nanocarrier often involve a design parameter optimization process, which is to vary the numerical values of different components in order to achieve optimal outcome. Specifically, the final design is determined based on the highest efficacy value at a defined condition without illustrating the mechanism of the balance among different components, which makes those studies hardly instructive to future delivery system development. The investigation of the effect of charged group surface presentation presented here provides a prototype for conducting nanocarrier design optimization with a
mindset targeting both efficacy and mechanistically understanding of nanocarrier engineering.

3.5 Conclusion

In summary, we have presented the synthesis of triblock copolymers that form micelles and expose different amounts of charged groups on their surface. We systematically studied the interactions of the micelles with miRNA and the miRNA-micelle complexes with biologic macromolecules and cells. By precise control of polymer structure, the accessibility of charged groups on micelle surface was used to control the interaction of miRNA with micelles and the eventual interaction with cells. The accessibility of the charged groups has direct impact on miRNA interaction with the micelles, micelleplexes stability and cellular interaction. These results guide the design of materials for RNA/DNA interactions by suggesting that the total charge of the groups used is not the primary factor for determining RNA binding or cellular association. Future work will further elucidate if the shielding of ionic groups can be controlled in alternate architectures. The PEG corona
can shield the ionic groups thus diminishing RNA-micelle binding and minimizing cell binding; however, this PEG corona protects the RNA from competition yielding a more stable micelleplex.

3.6 References

[24] Y. Zhang, M. Köllmer, J.S. Buhrman, M.Y. Tang, R.A. Gemeinhart, Arginine-rich,

Kissel, Targeting the blind spot of polycationic nanocarrier-based siRNA delivery, ACS Nano, 6 (2012) 9447-9454.

[34] H.X. Wang, X.Z. Yang, C.Y. Sun, C.Q. Mao, Y.H. Zhu, J. Wang, Matrix

Dendrimers Self-Assembled from Low-Generation Peptide Dendrons for Highly Efficient Gene Delivery and Biological Tracking, ACS Nano, 8 (2014) 9255-9264.

4 Redox-responsive Anti-miRNAs Delivery System Demonstrates Superior Potential for Releasing MiRNAs

4.1 Abstract

Glioblastoma multiforme (GBM) is a type of central nervous system (CNS) disease that poses great threat to human health. Recently found to play key roles in GBM initiation and progression, microRNA (miRNA) are small gene regulators generated from the DNA nontranscriptional regions. Targeting the misregulated miRNA in the diseased cells might enable the development of novel targeted therapy for GBM. In this chapter, a redox responsive micelle-like nanoparticle delivery system was engineered with methoxy-poly(ethylene glycol-b-lactide-b-arginine) block copolymer (mPEG-PLA-SS-R15). Using confocal laser live cell imaging, the redox responsive feature was found to contribute significantly to oligonucleotides dissociation from the micelleplexes and lead to higher delivery efficiency in dual luciferase assay. More importantly, for the first time, micelleplexes were found to have significantly better stability in cerebrospinal fluid (CSF) than in human plasma, indicating the advantage of applying micelleplexes for CNS disease.
The micelleplexes also demonstrated high delivery efficiency in CSF, suggesting potential performance \textit{in vivo}. The redox responsive delivery system is a promising delivery platform for the treatment of CNS disease with miRNA therapy.

4.2 Introduction

Glioblastoma multiforme (GBM) is a fatal brain tumor with an annual incidence of approximately 5 in 100,000 people, 99\% of GBM patients die of the disease with a median survival of 15 months despite aggressive intervention, specifically neurosurgery, radiation and chemotherapy [1]. Unfortunately, over the last two decades, few effective therapeutic advances were reported in the field other than Temozolomide [2]. The intrinsic distinct properties of GBM make new therapy development extremely challenging. The existence of blood-brain barrier limits drug delivery routes. More importantly, instead of metastasizing to other location, GBM resides in non-renewable normal brain tissue and diffusely invade into normal brain parenchyma, limiting treatment options to those that will not cause unacceptable long-term neuro-cognitive dysfunction [3]. Thus, targeted therapy that specifically aims GBM genetic characteristics is one of the most promising directions
for new drug development.

In the last decade, a type of short noncoding RNAs, miRNAs, was discovered to function as gene regulators of multiple target genes through seed pairing with 3’ untranslated region (UTR) of mRNA [4]. MiRNAs were found to play critical roles in many steps of the tumorigenic process, including cellular proliferation, invasion, apoptosis, angiogenesis, and stemness of various types of cancer, including GBM [5, 6]. One of the key characteristics of GBM is its cellular heterogeneity, specifically when one specific oncogenic gene is targeted, the tumor cells tend to find alternative compensating pathways [3]. MiRNA can regulate a network of genes through seed pairing. In other words, when a miRNA is artificially modulated, multiple cancer-related signaling pathways could be regulated simultaneously. It is believed that new GBM-targeted therapy could be developed by targeting misregulated miRNAs, especially miR-21 [7-12].

Due to the negatively charged nature and instability of nucleic acids, effective delivery vehicles are needed to achieve cellular uptake and protect nucleic acids against enzymatic degradation in vivo [4]. Recently, micelleplexes have attracted significant scientific
attention for nucleic acid delivery, where cationic polymer is attached to hydrophobic polymer block to drive micelles formation in aqueous environment through hydrophobic segment aggregation before loading nucleic acids via electrostatic interactions. In some cases, hydrophilic polymers, such as polyethylene glycol (PEG) blocks, are also included to enhance steric stability of micelleplexes. Thermodynamically speaking, micelleplexes are more stable than polyplexes since hydrophobic and electrostatic interactions are entropically driven processes, which cooperatively contribute to micelleplexes formation and stability [13].

However, micelle-based drug delivery has been plagued by stability issue in systemic administration [14]. Upon injection, charged nanocarriers are confronted with various biological components, mainly blood cells and serum proteins, which causes early release of nucleic acids and system disassembly [15]. Cerebrospinal fluid (CSF) is a clear, colorless body fluid present in the brain and spine [16]. It provides physical support for the brain, and is believed to absorb and carry away toxic metabolic byproducts [17]. The protein concentration in human CSF is 20 mg/dL, much lower than the protein
concentration of 6,000 mg/dL in human serum [18]. In this study, we hypothesized that micelleplexes have better stability in CSF than human plasma. A micelleplex system was built, which is composed of hydrophilic arginine-rich cell penetrating peptide (R\textsubscript{15}) conjugated methoxy-poly(ethylene glycol-b-lactide) (mPEG-b-PLA) block copolymer. The miRNAs silencing molecule, anti-miRNAs, were complexed with R\textsubscript{15} in the hydrophilic corona through electrostatic interactions. The PEG outer layer can ensure steric stability and prevent rapid clearance and PLA is readily biodegradable. (Figure 4.1)

Figure 4.1. Schematic illustration of micelleplexes assembly.

Research has shown that intracellular redox potential is essential for controlling cellular functions by influencing the status of redox-sensitive macromolecules and protect against oxidative stress [19]. Small molecule- and protein-based redox buffer systems, including
GSH/GSSG, cysteine/cystine, and oxidized/reduced thioredoxin, constitute intracellular redox homeostasis [20]. Intracellular glutathione (GSH) concentration (~10 mM) is significantly higher than the level in extracellular environment (<2 μM) [21]. This dramatic difference in redox potential can serve as a trigger for drug delivery. A redox responsive disulfide bond was incorporated between mPEG-b-PLA and R₁₅ to enhance anti-miRNAs release by promoting micelle disassembly in GSH rich cytosol. (Figure 4.2)

Figure 4.2. Schematic illustration of micelleplexes disassembly in the presence of intracellular reducing environment.
Using GBM as a disease model, we tested the anti-miRNAs delivery efficiency of redox-R$_{15}$ micelleplexes in CSF, where the micelleplexes demonstrated superior stability. Both redox-R$_{15}$ and nonredox-R$_{15}$ micelleplexes successfully delivered anti-miR-21 to glioblastoma cells in CSF, but the redox-R$_{15}$ micelleplexes showed significantly higher delivery efficiency, suggesting the great potential of micelleplexes for treating CNS disease.

4.3 Materials and Methods

4.3.1 Materials

Carboxyl terminal-mPEG2000-PLA3000-COOH was purchased from Advanced Polymer Materials (Montreal, Canada). Ac-CR$_{15}$-NH$_2$ and CR$_{15}$K(FITC)NH$_2$ peptides were synthesized by VCPBIO (Shenzhen, China). N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), 1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI), 3,3′-dioctadecyloxycarbocyanine perchlorate (DiO) and N-(2-Aminoethyl)maleimide trifluoroacetate salt (AEM) were purchased from Sigma Aldrich. 3-(2-pyridyldithio) propionyl hydrazide (PDPh)
crosslinker was obtained from Fisher. Cy-5 labeled single stranded anti-miRNA was from Invitrogen. MirVanaTM miRNA-21 inhibitor (miRBase accession# MIMAT0000076, mature miRNA sequence UAGCUUAUA-GACUGAUGUUGA) and miRNA inhibitor negative control #1 was purchased from Ambion (Austin, TX). Cerebrospinal Fluid (CSF, Cat No# 991-19-S-5 x 1) was obtained [with Institutional Review Board (IRB) Exemption] from Lee Biosolutions, Inc (St. Louis, MO). Anti-coagulated (citrate) human plasma was purchased (with IRB Exemption) from Innovative Research (Novi, MI). The miR-21 Luciferase Reporter Vector was obtained from Signosis, Inc. (Santa Clara, CA) and the renilla control vector was kindly provided by Dr. Yu Hou in University of Illinois Cancer Center.

Human glioblastoma U251 cell line was received from Dr. Lena Al-Harthi (Rush University). The cell line was maintained in Dulbecco’s modified Eagle’s medium (DMEM; Gibco) supplemented with 10% fetalbovine serum (FBS), 1 mM sodiumpyruvate, 1% nonessential amino acids, 100 U/mL streptomycin, and 100 U/mL penicillin. Cells were incubated in humidified air and 5% CO\textsubscript{2} at 37°C.
4.3.2 Preparation of redox and nonredox polymer conjugates

Redox polymer conjugates were synthesized using disulfide exchange reaction. Methoxy-PEG2000-PLA3000-COOH (mPEG-PLA), EDC and NHS (100, 40 and 24 mg, respectively) was dissolved in DMSO and stirred for 30 min, after which 14 mg PDPH crosslinker was added, thus modifying mPEG2000-PLA3000 with a pyridyldisulfide functional group at the previous carboxyl termini. Unreacted reagents were removed by dialysis against deionized water for 24 h with a molecular weight cut off of 1000 dialysis membrane. The sample was recovered from the dialysis tube and lyophilized to a white powder. Successful PDPH modification was confirmed with 1H NMR (Figure 1, Appendix A) in CDCl$_3$ using a 400 MHz Bruker DPX-400 spectrometer (Bruker BioSpin Corp., Billerica, MA). To couple mPEG-PLA-PDPH with CR$_{15}$, 40 mg of mPEG-PLA-PDPH and 10 mg CR$_{15}$ were dissolved in argon degased DMSO and reacted for 6 hours in argon environment before purification with a Sep-Pak C$_{18}$ column. Successful conjugation was confirmed by 1H NMR in DMSO-d_6 [22].

Nonredox control polymer conjugates were synthesized using thiol-maleimide coupling.
Carboxyl terminal-mPEG2000-PLA3000-COOH, EDC and NHS (100, 40 and 24 mg, respectively) was dissolved in DMSO and stirred for 30 min, after which 16 mg AEM crosslinker was added, thus modifying mPEG2000-PLA3000 with a maleimide functional group at the previous carboxyl termini. The purification, conjugation and confirmation steps were the same as the redox polymer conjugates. Successful preparation of the mPEG-PLA-AEM and mPEG-PLA-R_{15} polymer conjugates (Figure 1 & 2, Appendix B) was confirmed with 1H NMR spectra.

4.3.3 Micelleplexes preparation

Micelles and micelleplexes were prepared as previously reported by our group [23]. Briefly, 10 mg copolymer was dissolved in 0.5 mL acetonitrile. Solvent was removed by rotovap to form a polymer matrix. RNAse free water (0.5 mL) was added to rehydrate the polymer film followed by sonication for 5 min to form empty micelles. To prepare micelleplexes, micelles were diluted with RNAse free water to appropriate concentration and added dropwise to RNA solution (10 μM) and incubated for 15 min at room temperature.
4.3.4 Gel shift

The successful loading of anti-miRNAs to micelles was confirmed by a gel shift assay [23]. Briefly, micelleplexes were prepared at predetermined positive to negative (+/-) charge ratios and the resulting micelleplexes were analyzed by electrophoresis using a 20% non-denaturing polyacrylamide gel for 1 h at 80 V in TBE buffer (89 mM Tris-borate, 2 mM EDTA). Following SYBR gold staining, the gel was visualized using a gel documentation system (GelDoc 2000, Bio-Rad, Hercules, CA).

4.3.5 Particle sizing and \(\zeta\)-potential

The particle size and \(\zeta\)-potential of micelleplexes were measured in 10 mM HEPES buffer (pH 7.4) with a Nicomp 380 Zeta Potential/Particle Sizer (Particle Sizing Systems, Santa Barbara, CA). The data represent the mean plus or minus (\(\pm\)) the standard deviation (SD) from three independent experiments.

4.3.6 Micelle morphology

The morphology of micelles and micelleplexes were characterized by transmission electron microscopy (TEM, JEM-1220, JEOL Ltd., Japan). A drop of micelles (1 mg/mL)

141
was placed on a carbon-coated 300 mesh copper grid, followed by staining with 2% (w/v) uranyl acetate solution, and then dried at room temperature.

4.3.7 Stability of micelleplexes in cerebrospinal fluid

The stability of micelleplexes was tested with a Förster resonance energy transfer (FRET) based method [24]. The FRET pair, DiO and DiI, were encapsulated in the hydrophobic core of the micelles by dissolving 1% w/w of DiO and DiI in acetonitrile together with polymer conjugates, respectively. Solvent was removed by rotovap to form a polymer matrix, and then deionized water was added to rehydrate the polymer film followed by sonication for 5 min to form FRET micelles. The unencapsulated dye, precipitated as crystals, was removed by filtering the micelle solution with 0.45 μm syringe filter. Based on the balance between cellular association efficiency and vehicle cytotoxicity, micelleplexes were then prepared as described above at +/-charge ratio 30. The FRET micelleplexes (100 μg/mL, final concentration) were incubated with PBS, CSF and human plasma at 37°C for up to 4 hours. The volume ratio between micelleplexes solution and medium is 1:9 and the total volume is 1 mL. Time-resolved spectra were collected on a
spectrofluorophotometer (RF 1501, Shimadzu, Japan) at excitation wavelength of 484 nm and emission wavelength from 480 to 600 nm. To monitor the relative peak shift between I_{499} (the emission of DiO at 499 nm) and I_{561} (the emission of DiI at 561 nm), the FRET ratio, λ, was calculated from the spectra using Equation 1.

$$\lambda = \frac{I_{561}}{I_{561} + I_{499}}$$ \hspace{1cm} \text{Equation 1}

Redox-R$_{15}$/Cy3-anti-miRNA micelleplexes were prepared at +/- charge ratio 30 in RNase free water. Micelleplexes solution containing 50 pmoles of anti-miRNAs were added to PBS, CSF or human plasma at 37 °C, respectively, in a final total volume of 100 µL. MiRNA or micelles, at the equivalent mass/moles as the micelleplexes, were added to PBS, CSF or human plasma and used as positive and negative control, respectively. The fluorescence recovery of micelleplexes was normalized against fluorescence intensity of Cy3-anti-miRNA in the same medium. The stability of micelleplexes was monitored for 4 hours after adding to PBS, CSF or human plasma and the microplate was sealed and kept in 37 °C incubator between measurement. The experiment was carried out in Corning black
96 well plate and measured on BioTek Synergy2 Multi-Mode Microplate Reader (Winooski, VT) at excitation 543 nm and emission 570 nm.

4.3.8 Anti-miRNA dissociation from micelleplexes with confocal microscopy

To monitor the anti-miRNA dissociation from micelleplexes in cytoplasm, U251 cells were seeded in 4-chamber 35mm glass bottom dish (In Vitro Scientific, Sunnyvale, CA) at 1.5×10^5 cells per chamber in 500 μL growth media 24 hours before an experiment. The medium was exchanged with OPTI MEM and micelleplexes formed from CR_{15}K(FITC)NH₂ micelles and Cy3-anti-miRNA were applied to the chamber. Four hours later, cells were rinsed twice with PBS and the medium was replaced with OPTI MEM. Another twenty hours were given to allow anti-miRNAs dissociate from micelleplexes before imaging. The nuclei were stained with Hoechst 33258 for 5 min before CLSM imaging. CLSM images were acquired using a Zeiss LSM 510 META (Carl Zeiss, Germany) with a water immersion 63× objective (C-Apochromat, Carl Zeiss). Excitation wavelengths were 405 nm (Diode 405), 488 nm (argon laser) and 543 nm (HeNe laser) for Hoechst 33258, FITC, and Cy3, respectively. In order to obtain the 3D information of the dissociation efficiency, 20 slices for 30 cells were obtained with CLSM Z-stack and 30
cells were counted as previously reported [25, 26]. The colocalization ratio between Cy3-
anti-miRNA and FITC labeled micelles was measured with Mender’s coefficient, M, using
ImageJ, which calculates the percentage of red pixels (Cy3) colocalizing with green pixels
(lysoTracker) with an automatic threshold [27]. The anti-miRNA dissociation efficiency,
ε_{ee}, was calculated, Equation 1.

$$\varepsilon_{ee} = (1 - M) \times 100\%$$ \hspace{1cm} \text{Equation 1}

4.3.9 Anti-miR-21/micelleplexes activity

The efficiency of anti-miRNA delivery was tested using a miR-21 luciferase reporter
plasmid [28]. A miR-21 complementary sequence was engineered at 3’ untranslated region
of luciferase gene. In the presence of miR-21, Firefly luciferase mRNA is rapidly degraded,
thereby producing lower levels of Firefly luciferase. Depending on the delivery efficiency
of anti-miR-21, Firefly luciferase level will be increased due to miR-21 inhibition. Renilla
expression vector is always cotransfected for normalization of well-to-well variation.

U251 cells were seeded in white 96 well plate at 10,000 per well. The cells were cultured
for 24 to 48 hour to achieve at least 80% confluence at the time of transfection. Anti-miR-21/micelleplexes were prepared as described above. The old medium was removed and replaced with CSF containing the micelleplexes. It was shown that culturing U251 cells with CSF up to 4 hours does not affect cell viability. Four hours after the micelleplexes transfection, miR-21 Firefly luciferase vector and Renilla control vector was cotransfected with Dharmacon DharmaFECT™ Duo Transfection Reagents as the company protocol instructed. The Firefly luciferase activity was measured with Dual-Luciferase® Reporter Assay System (Promega) by following the reagent protocol.

4.4 Result and Discussion

To synthesize the mPEG-PLA-SS-R$_{15}$ (Figure 4.3), the carboxyl terminal of mPEG-PLA-COOH was first reacted with the hydrazide group on PDPH crosslinker to bring in the disulfide bond. Successful preparation of redox conjugates were confirmed by 1H NMR after purification with C$_{18}$ column. The guanidine group (-NHCH=NHNH$_2$, δ 7.43) in CR$_{15}$ and the proton (-CO-CH(CH$_3$)-O-, δ 5.19) in the PLA segment were present in the NMR spectrum of the final product. (Figure 4.4) The R$_{15}$ substitution rate was calculated
based on the intensity ratio between the proton peak of the guanidine group and that of the PLA segment, which is around 30%.

Figure 4.3. Chemical reaction scheme for redox (A) and nonredox (B) polymer conjugates.
Figure 4.4. 1H NMR spectra of (A) CR$_{15}$ (B) mPEG-PLA-COOH (C) mPEG-PLA-SS-R$_{15}$. The purified products have characteristic peaks from both guanidine group (a, δ 7.43, 4H) in R$_{15}$ and PLA segment (b, δ 5.19, 1H).

Characterization of micelleplexes

We hypothesized that the triblock copolymer, mPEG-PLA-SS-R$_{15}$ will form micelles with a core-shell conformation in aqueous environment where the hydrophobic block PLA collapse and the mPEG and R$_{15}$ block intertwine to constitute a hydrophilic corona. The oligonucleotides will be loaded onto the micelles through electrostatic interaction with the
oligoarginine block on the surface. We have previously confirmed this conformation with

1H NMR [23]. The antimiRNA condensing ability of micelles were assessed by gel shift assay. As expected, redox-R_{15} and nonredox-R_{15} micelles demonstrated similar anti-

miRNA condensing ability due to their very similar oligoarginine conjugation rate, tight micelleplexes were formed at above +/- charge ratio 5. (Figure 4.5A) The particle size and zeta potential of micelles were also tested (Figure 4.5B). The morphology of redox-R_{15} and nonredox-R_{15} micelles before and after loading anti-miRNA was characterized by TEM, all of which demonstrated spherical shape (Figure 4.5C).
Figure 4.5. Micelleplexes characterization. (A) Redox-R$_{15}$ and Nonredox-R$_{15}$ micelles complexation with anti-miRNA at +/- charge ratios of 1, 2, 5, 10, 30 and 50. (B) Particle size and zeta potential of Redox-R$_{15}$ and Nonredox-R$_{15}$ micelles. (C) TEM characterization of Redox-R$_{15}$ and Nonredox-R$_{15}$ micelles and micelleplexes morphology, the scar bar is 100 nm.

Stability of micelleplexes in Cerebrospinal Fluid

Stability is one of the most critical challenges facing micelles application for drug delivery: small molecule encapsulated micelles tend to fall apart below critical micelle concentration while in micelleplexes the nucleic acid often suffer from early release due to competition from the complex components in the blood serum, mostly blood cells and proteins [13, 14]. Cerebrospinal fluid (CSF) in the brain constitutes a ‘water bath’ within the meninges and acts as a cushion to protect the brain from injury with position or
movement [29]. The CSF contains on average 20 mg/dl protein, significantly lower than the 6,000 mg/dl protein concentration in plasma [18].

Hence, we hypothesized that micelleplexes will have better stability in human CSF than plasma. A FRET based method was used to test the micelleplexes stability. Two hydrophobic fluorophores, DiO and DiI, were encapsulated in the hydrophobic core of the micelleplexes. The FRET phenomenon will disappear if the DiO and DiI are released due to micelleplexes disassembly. The FRET ratio, λ, was used to monitor the relative peak shift between I_{499} (the emission of DiO at 499 nm) and I_{565} (the emission of DiI at 565 nm) as the stability of micelleplexes changes in the presence of different media [24]. Comparing to micelleplexes in PBS, there was immediate micelleplexes disassembly happening right after the micelleplexes was mixed with CSF and human plasma (Figure 4.6A, t=0 hour). However, micelleplexes demonstrated significantly better stability in CSF than in human plasma, only around 10% lower than in PBS. The stability of redox-R$_{15}$ micelles without anti-miRNA loading was very similar to the redox-R$_{15}$ micelleplexes, suggesting anti-miRNA loading did not affect micelles stability (Figure 4.6B). Due to the fact that the
DiO/DiI pair was loaded in the micelle core, the FRET-based assay can test the stability of micelle polymer assembly but not the electrostatic association between anti-miRNA and micelles. Yet one of the critical challenges facing micelleplexes is the loss of nucleic acids due to competition from complex components in plasma before reaching disease sites.
Figure 4.6. Stability of micelleplexes and micelles in different media. (A) Micelleplexes stability in PBS, CSF and human plasma (B) Micelles stability in PBS, CSF and human plasma (C) Stability of the association between Cy3-anti-miRNA and micelles in PBS, CSF and human plasma. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed.
Fluorescence quenching assay is a common method for testing nucleic acids condensation ability of cationic polymer [30, 31]. The fluorescence intensity of fluorophore-labeled nucleic acids is quenched by the close spatial proximity in complexes where many nucleic acids are compacted. On the contrary, the fluorescence intensity of Cy3-anti-miRNA should recover if the nucleic acids are released from the micelleplexes. Figure 4.6C, the fluorescence intensity of Cy3-anti-miRNA/micelleplexes in PBS is around 68.4% that of free Cy3-anti-miRNA in PBS and the fluorescence quenching remain relatively constant in 4 hours, suggesting the anti-miRNAs were tightly condensed by micelleplexes in PBS. The fluorescence intensity of Cy3-anti-miRNA/micelleplexes was recovered immediately after mixing with the human plasma, suggesting Cy3-anti-miRNA release from the micelleplexes due to competition of the complex components in plasma. Surprisingly, the fluorescence intensity of Cy3-anti-miRNA/micelleplexes in CSF dropped to the same level as in PBS at 2 and 4 hours after the initial fluorescence recovery immediately after mixing with CSF. The initial fluorescence recovery could be due to CSF protein competition, which loosened the micelleplexes structure. However, due to the significantly lower protein
concentration in CSF, such competition was not enough to cause anti-miRNA release and/or micelles disassembly. Instead, a protein corona might form on the surface of the micelles, which further condensed the micelleplexes.

Anti-miRNA dissociation from micelleplexes

Micelleplexes formation (complexation) and gene release from the micelleplexes (decomplexation) are major events in polymeric nucleic acid delivery [32]. The unpackaging of nucleic acid from micelleplexes requires thoughtful design considerations because the release of nucleic acids payloads from carrier in cytoplasm is a necessary step for effective nucleic acids delivery [33]. To enhance anti-miRNA release from the micelleplexes after cellular uptake, we included a disulfide bond between the mPEG-PLA block and polyarginine block. We hypothesized that the polyarginine block will leave the micelle in presence of high concentration of glutathione in the cytoplasm and thus facilitate anti-miRNA dissociation from the delivery system. To test the hypothesis, we fluorescently labeled the micelles on the polyarginine block with FITC and prepared micelleplexes with Cy3-labeled anti-miRNA. The dissociation of Cy3-anti-miRNA from the micelleplexes was
monitored with confocal laser living cell microscopy at 4 and 24 hours post delivery. The redox and nonredox micelleplexes had similar RNA dissociation kinetics at 4 hours but redox micelleplexes showed apparently more RNA dissociation at 24 hours. (Figure 4.7A)

Using the images obtained from confocal Z-stack mode scanning, RNA dissociation quantification shows that redox responsive micelleplexes had significantly higher dissociation rate than nonredox control group at 24 hours post transfection. (Figure 4.7B)

This suggests that redox responsive function contributed to micelleplexes disassembly, which might lead to better anti-miRNA delivery efficiency.
Figure 4.7. CLSM observing anti-miRNA dissociation from micelleplexes. (A) Represented CLSM images. Red: Cy3-anti-miRNA, Green: FITC-micelles, Blue: Nucleus, and the composite of the three pseudocolor images where the Cy3-anti-miRNA concentration was 100 nM in association with micelles at a charge ratio of 30. Scale bar is 20 μm. Top two rows: imaging at 4 hours after delivery; bottom two rows, imaging at 24 hours after delivery, micelles containing medium was replaced with fresh medium at 4 hours to stop further cellular uptake. (B) Quantitative analysis of anti-miRNA dissociation rate. Cy3-anti-miRNA/redox-R₁₅ micelleplexes (blue bars) and Cy3-anti-miRNA/nonredox-R₁₅ micelleplexes (red bars). Dissociation rate was calculated for 30 individual cells. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). * indicates $p < 0.05$.

A

<table>
<thead>
<tr>
<th></th>
<th>Anti-miRNA</th>
<th>Micelles</th>
<th>Nucleus</th>
<th>Composite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonredox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redox</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4 hour</th>
<th>24 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonredox</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Redox</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Bar graph showing dissociation rate over time.
Anti-miR-21/micelleplexes delivery efficiency in Cerebrospinal Fluid

To assess the suitability of the micelleplex system for glioblastoma treatment, we tested the anti-miR-21/micelleplexes delivery efficiency with dual luciferase assay in glioblastoma cell line U251. The micelleplexes were incubated with cells in the presence of CSF for 4 hours and then full growth medium containing 2 fold FBS was added to the wells. The amount of redox and nonredox micelles was within the non toxic range of delivery carrier (Figure 4.8). Using CSF as culturing media, redox micelleplexes showed significantly better delivery efficiency than nonredox micelleplexes control, consistent with the anti-miRNA dissociation result (Figure 4.9), which clearly demonstrated the advantage of incorporating the redox responsive feature in anti-miRNA delivery system.
Figure 4.8. Cytotoxicity of redox and nonredox micelles to U251 cells. Different amount of micelles were added to U251 cells and cultured in CSF for 4 hours followed by further incubation in full growth medium for 48 hours as in the dual luciferase assay. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed.
Figure 4.9. Anti-miR-21/micelleplexes delivery efficiency with dual luciferase assay. The delivery efficiency of redox-R15 micelleplexes (blue bars) and nonredox-R15 micelleplexes (red bars) were compared by complexing anti-miR-21 and transfecting U251 glioblastoma cells in cerebrospinal fluid. The firefly luciferase level was normalized with renilla luciferase level. Data were presented as the mean plus or minus (±) standard error of the mean (S.E.M.). Three independent replicates of each experiment were performed. *** indicates \(p < 0.0001 \).

Small silencing RNA release from delivery carrier is a rate-limiting step for oligonucleotides delivery and our result shows that redox sensitive disassembly design could lead to more effective delivery. Three-dimension quantification with confocal microscopy supports our hypothesis that redox-responsive feature leads to more anti-miRNAs dissociation from micelleplexes. However, the enhanced anti-miRNAs delivery
efficiency of redox-R₁₅ micelleplexes observed in dual luciferase assay may not be exclusively due to increased anti-miRNAs release. When the redox-R₁₅ micelleplexes respond to the reducing milieu in cells, it is highly possible that the R₁₅ block and anti-miRNAs remain associated after being cleaved from the mPEG-PLA block. Due to the different physicochemical properties of R₁₅/anti-miRNAs polyplexes and nonredox-R₁₅ micelleplexes, they could have different intracellular trafficking routes, which are believed to contribute to small silencing RNA delivery efficiency [34]. Thus, it would be beneficial to investigate the effect of incorporating redox responsive feature on micelleplexes intracellular trafficking in future studies.

Most delivery efficiency of nucleic acids carrier was first screened in standard cell culture medium in vitro. For the first time, we test the transfection efficiency of micelleplexes in CSF. Upon contacting with biological fluids, nanoparticles are confronted with complex proteins, which form a coating on nanoparticle surface known as the protein corona [35]. It is now believed that “bare” nanoparticle does not exist in vivo [36]. Tenzer et al reported that rapid corona formation on silica and polystyrene nanoparticles after mixing with
human plasma affects haemolysis, thrombocyte activation, nanoparticle uptake and endothelial cell death at an early exposure time [37]. However, a lot of studies investigating the effect of nanoparticle design criteria and surface properties were conducted in cell culture medium, which deteriorate the clinical impact of those results. Furthermore, it is of utmost clinical impact to investigate the components of nanoparticle’s protein corona after mixing with CSF and the effect of the protein corona in nanoparticle’s fate and function inside of the brain.

4.5 Conclusions

A redox responsive micelle delivery system for miRNA therapy was built and the redox responsive feature was found to contribute significantly to delivery efficiency due to enhanced cargo release in the cytoplasm. In addition to the miRNA silencing efficiency, the micelleplexes are nontoxic in the conditions tested and are effective even when administered in CSF, suggesting potential in vivo delivery ability. In the recent two decades, a plethora of nonviral synthetic delivery carriers have been developed and
designed for systemic administration. Despite the significant advances in understanding
delivery barrier and chemical engineering technology, their critical issue of systemic
clearance has not been overcome. For the first time, micelleplexes were demonstrated to
have better stability in CSF than in human plasma, suggesting potential advantage of
applying such delivery system for brain disease and avoiding the stability challenge that
have been plaguing micelle-based drug delivery for systemic administration.

4.6 References

review, Jama, 310 (2013) 1842-1850.

[23] Y. Zhang, Y. Liu, S. Sen, P. Kral, R.A. Gemeinhart, Charged group surface

5 Conclusion and Future Work

5.1 MiRNA Delivery Overview

In the recent two decades, nanomedicine has been one of the focuses of drug delivery field, especially when it comes to cancer therapy, due to the unprecedented potential benefits it could bring, such as specificity and high cargo loading [1]. Standing on the advantages of nanoscale delivery vehicle, gene delivery targets the root of a disease instead of the product of the disease pathology, striving to achieve specificity on an even higher hierarchy. The complexity and heterogeneity of signaling pathways involved in cancer, including tumor initiation, progression, metastasis and chemo/radio resistance accounts for the difficulty of developing effective medicine [2]. The discovery of miRNAs might be the critical piece of the cancer research puzzle since one miRNAs can regulate a broad network of genes involved in different signaling pathways.

Many pioneering research groups have dedicated their efforts in developing delivery system for miRNAs [3-5]. However, fundamental understanding of the unique
physicochemical properties of miRNAs and the corresponding requirements these properties impose on delivery system were often neglected. If continued, this trend will inevitably repeats the pattern that many working systems exist but little instructive information could be extracted. In this dissertation, we aim to shed some light to this aspect. Using oligoarginine as a model for cationic polymers, the study has demonstrated the effect of oligonucleotides conformation on delivery system efficiency, and the potential benefit of fundamental understanding of oligonucleotides loading and unpackaging process. Groundwork for study of such kind is established, which is warranted for developing new miRNA delivery system.

5.2 Scientific Contribution of This Study

Significant progress has been made in confirming the ability of different systems to deliver miRNA, but few have made any clinical impact. One of the key reasons lies in that most of the delivery studies focus on developing a “working system”, which often undermines fundamental understanding of the effect of the properties of the delivery system on the delivery outcome. In the gene delivery field, it is often found that little instructive
information for developing other systems can be extracted from a successful case while the
failed systems were not published.

In Chapter 2, we set out to test the hypothesis that oligoarginine will have different
physicochemical interaction with single-stranded anti-miRNA and double-stranded siRNA
due to the conformation disparity between single and double-stranded oligonucleotides. It is
well known that double-stranded DNA and small double-stranded siRNA have different
requirements for delivery vehicle [6]. However, it is not clear whether the single-stranded
small oligonucleotides will vary from double-stranded small oligonucleotides. There is no
such information available according to a thorough literature search, and yet the
information is critical to the development of delivery system. Physicochemical
characterization of single-stranded anti-miRNA/R₈ complexes and double-stranded
siRNA/R₈ complexes with gel shift assay, fluorescence quenching assay and dynamic light
scattering suggests that R₈ have different interaction with single-stranded anti-miRNA in
comparison with double-stranded siRNA. Also, siRNA/R₈ associated with cells to a greater
extent than anti-miRNA/R₈ at all of the charge ratios tested, confirming our hypothesis that
the charge density and flexibility differences between single and double-stranded RNA have an influence on their cell association [7].

Complexes formation and gene release from the complexes are major events in polymeric nucleic acids delivery. In Chapter 3, we created a micelles-like nanoparticle delivery model with methoxy-poly(ethylene glycol-b-lactide-b-arginine) and investigated the interaction between charged groups on the micelle surface and miRNAs, which greatly affects the micelleplexes formation process. Surface properties of the micelles were varied by controlling the oligoarginine block length and conjugation density. Depending upon the oligoarginine length and density, micelles exhibited miRNA loading capacity directly related to the presentation of charged groups on the surface. The effect of charged group accessibility of cationic micelle on micelleplex properties provides guidance on future miRNA delivery system design [8].

The unpackaging of nucleic acid from micelleplexes requires thoughtful design considerations because the release of nucleic acids payloads from carrier in cytoplasm is a necessary step for effective nucleic acids delivery [9]. To enhance anti-miRNA release
from the micelleplexes after cellular uptake, we included a disulfide bond between the mPEG-PLA block and oligoarginine block. In Chapter 4, we hypothesized that the polyarginine block will leave the micelle in the presence of glutathione and the reduced environment in the cytoplasm and thus facilitate anti-miRNA dissociation from the delivery system. The redox responsive feature was found to contribute significantly to oligonucleotide dissociation from the micelleplex and lead to higher delivery efficiency, indicating the necessity of including self-disassembly function in nucleic acid delivery carrier. Stability issue has been plaguing micelle systematic administration, specifically small molecule drug containing micelles fall apart below critical micelle concentration while micelleplexes prematurely release nucleic acids when facing competition from the complex proteins in human serum. Yet research proposing micelle-based delivery for systematic application keeps being published. For the first time, I found that hydrophobic small molecule containing micelles and micelleplexes have significantly better stability in cerebrospinal fluid (CSF) than in human plasma, indicating the advantage of applying micelleplex for CNS disease.
5.3 Recommended Future Research

Micelleplexes constitutes one of the most ideal delivery vehicles for small oligonucleotides delivery due to their easy assembly, better thermodynamic stability, and small molecule drug codelivery potential [10]. Often used in nucleic acids delivery, cationic polymers facilitate delivery through nonspecific interaction of positively charged functional groups with negatively charged components on cellular membrane such as proteoglycans [11]. PEGylation is introduced to reduce nonspecific interaction but it also greatly diminishes the transfection efficiency [12]. In Chapter 3, we demonstrated that a balance between PEG block and oligoarginine length determines miRNA loading and the resulting micelleplexes’ interaction with cellular membrane. Utilizing the acidic condition of tumor microenvironment [13], I envision that including an acidic pH responsive functional group, such as histidine that contains imidazole functional group in the oligoarginine block could allow the R₈ block in mPEG-PLA-R₈ micelleplexes to extend to the surface and mediate efficient cellular interaction after stably circulating to the tumor site under the protection of PEG hydration layer. Additionally, targeted delivery systems could be built on the mPEG-
PLA-oligoarginine micelleplexes prototype by conjugating targeting moieties to the micelles through PEG terminal modification.

In this dissertation, we have discovered that micelleplexes have superior stability in cerebrospinal fluid (CSF) in comparison to human plasma and redox-R\textsubscript{15} micelleplexes achieved efficient anti-miR-21 delivery in CSF \textit{in vitro}. Further investigation of the stability \textit{in vivo} by tracking micelleplexes in mouse brain model will no doubt lay the groundwork for exploring micelle-like nanoparticle application in brain disease treatment. The brain parenchyma could limit nanoparticle diffusion due to interstitial space limitation and interaction with extracellular components. The pore size of ECS varies based on the models used for the calculation. Most computational models of neurotransmission assume an ECS width of 20 nm, although it is known that varying this parameter can significantly affect results [14].

The “fluid” pore size is especially meaningful since the flow of CSF contributes to the distribution of nanoparticles in the brain. An \textit{in vivo} diffusion analysis predicts a fluid-filled “pores” width of 38–64 nm in rat brain [14]. For the first step, the distribution of micelles
in the presence of tissues and CSF could be investigated with similar model by loading quantum dots in the hydrophobic core of micelles as previously described [15]. After revealing the distribution of micelles in living rat brain, the stability of micelles could be monitored by tracking the FRET signal loss in vivo using DiO/DiI loaded micelles as in Chapter 4.

Micelle-based delivery vehicles have been administered through intracranial, intranasal and intravenous routes for treating glioblastoma, Parkinson’s, and Alzheimer's [16-19]. However, it is not clear how each delivery route will affect the stability and efficacy of micelleplexes, which is a critical question needs to be answered before translating miRNA therapeutics to clinical brain disease treatment. Intranasal delivery provides a noninvasive way to bypass the BBB and avoid toxicity due to systemic administration. Brain system is commonly believed to be lack of immune system, and large macromolecules are removed from the CSF quite slowly, so they distribute throughout the CSF over time [20], which is beneficial to nanoparticles delivered intracranially. When applying nanoparticle intravenously, mechanism of Blood Brain Barrier (BBB) disruption or active targeting
strategy have to always be included in addition to the stability challenge from complex blood components and reticuloendothelial system (RES) clearance.

This dissertation has demonstrated the effect of oligonucleotides conformation on delivery system efficiency, and the potential benefit of fundamental understanding of oligonucleotides loading and unpackaging process. The research methodology and experimental approaches established here could be applied to investigating the effect of different delivery carrier properties on oligonucleotides loading and release process. The research findings provide guidance for developing small oligonucleotides carrier in the future.

5.4 References

1759-1762.

713-731.
Figure A.1. 1H NMR spectrum of mPEG-PLA-PDP. The purified product was dissolved in CDCl$_3$-d, which has the four characteristic peaks from the 3-(2-pyridylthio) propionyl hydrazide (PDPH), (Red rectangle, aromatic proton, δ 7.52, 1H; 7.91, 1H; 8.02, 1H; 8.68, 1H).
Appendix B

Figure B.1. 1H NMR spectrum of mPEG-PLA-AEM. The purified product was dissolved in CDCl$_3$-d, which has the characteristic peak from the N-(2 Aminoethyl)maleimide trifluoroacetate (AEM), (a, δ 6.71, 2H).
Figure B.2. 1H NMR spectrum of mPEG-PLA-R$_{15}$. The purified product was dissolved in DMSO-d_6, which has the characteristic peaks from the guanidine group in arginine (b, δ 7.20, 4H).
Appendix E

Charged group surface accessibility determines micelleplexes formation and cellular interaction

DOI: 10.1039/C5NR00995E

If you are not the author of this article and you wish to reproduce material from it in a third party non-RSC publication you must formally request permission using RightsLink. Go to our Instructions for using RightsLink page for details.

Authors contributing to RSC publications (journal articles, books or book chapters) do not need to formally request permission to reproduce material contained in this article provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

- For reproduction of material from NJC:
 Reproduced from Ref. XX with permission from the Centre National de la Recherche Scientifique (CNRS) and The Royal Society of Chemistry.
- For reproduction of material from PCCP:
 Reproduced from Ref. XX with permission from the PCCP Owner Societies.
- For reproduction of material from PPS:
 Reproduced from Ref. XX with permission from the European Society for Photobiology, the European Photochemistry Association, and The Royal Society of Chemistry.
- For reproduction of material from all other RSC journals and books:
 Reproduced from Ref. XX with permission from The Royal Society of Chemistry.

If the material has been adapted instead of reproduced from the original RSC publication "Reproduced from" can be substituted with "Adapted from".

In all cases the Ref. XX is the XXth reference in the list of references.

If you are the author of this article you do not need to formally request permission to reproduce figures, diagrams etc. contained in this article in third party publications or in a thesis or dissertation provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

- For reproduction of material from NJC:
 [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC
- For reproduction of material from PCCP:
 [Original citation] - Reproduced by permission of the PCCP Owner Societies
- For reproduction of material from PPS:
 [Original citation] - Reproduced by permission of The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC
- For reproduction of material from all other RSC journals:
Appendix E (continued)
Appendix F

July 30, 2015

Richard Gemeinhart
Biopharmaceutical Sciences
M/C B65

Dear Dr. Gemeinhart:

The protocol indicated below has been reviewed in accordance with the Institutional Biosafety Committee Policies of the University of Illinois at Chicago and approved on September 12, 2013 pending the following clarifications. **All clarifications should be in bold, italic or highlighted.** Please see IBC web site for guidance on editing forms (http://www.research.uic.edu/protocolreview/ibc/forms/editing.shtml). Only those pages with revisions need to be submitted to the Institutional Biosafety Committee Office, 206 AOB, if revisions result in an exact page-for-page exchange. If an exact page-for-page exchange is not possible, then all pages affected must be resubmitted. Please be sure to address all concerns of the Committee.

Title of Application: Hydrogel Microparticles as Gene Carriers

IBC Number: 13-064

Clarifications:

a. In Form A, item 1, remove signature as this assurance and section is N/A to the scope of research proposed.

b. In Form A, item VId, remove check mark from BSL1 and check BSL2 for use of human cells lines.

c. In Biosafety Manual, please address the following:

i. Item 4.3, please provide specific date of BSC certification

ii. Item 4.3.13, 10% bleach followed by 70% ethanol needs to be used 70% ethanol is not sufficient for decontamination.

iii. Item 4.5, contact time must be at least 30 minutes.

iv. Item 4.7, 10% bleach followed by 70% ethanol needs to be used 70% ethanol is not sufficient for decontamination.

v. Item 4.14.4 a and b, please leave this items blank.
Appendix F (continued)

ii. Certification - All personnel listed in Appendix 1 must read the manual and sign the certification page.

When these clarifications have been made and approved, you will receive a letter of approval. Research may not be initiated under this protocol until that approval is granted.

Thank you for complying with the UIC's Policies and Procedures.

Sincerely,

Randal C. Jaffe, Ph.D.
Chair, Institutional Biosafety Committee

RCJ/mbb
cc: IBC File
Appendix G

Notice of Determination of Human Subject Research

October 8, 2014

20140960-85327-1

Richard Gemeinhart, Ph.D.
Biopharmaceutical Sciences
833 S Wood Street, Room 359,
M/C 865
Chicago, IL 60612
Phone: (312) 996-2253 / Fax: (312) 996-2784

RE: Protocol # 2014-0960
Protease Activity in Human Plasma

Sponsor: Departmental

Dear Gemeinhart:

The UIC Office for the Protection of Research Subjects received your “Determination of Whether an Activity Represents Human Subjects Research” application, and has determined that this activity DOES NOT meet the definition of human subject research as defined by 45 CFR 46.102(f).

You may conduct your activity without further submission to the IRB.

If this activity is used in conjunction with any other research involving human subjects or if it is modified in any way, it must be re-reviewed by OPRS staff.

193
VITA

Yu Zhang

EDUCATION
2010 – 5th year PhD candidate, Biopharmaceutical Sciences Program, University of Illinois at Chicago
2007 – 2010 Master of Science, Botanical Pharmaceutics, Key Laboratory of Forest Plant Ecology, Ministry of Education, China
2003 – 2007 Bachelor of Science, Life Science, College of Life Sciences, Northeast Forestry University, China

PUBLICATIONS
7. Zu, Y. G., Yuan, S., Zhao, X. H., Zhang, Y. & Zhang, X. N. Preparation, activity and

PATENTS

ABSTRACTS AND PROCEEDINGS, PODIA

Controlled Release Society-Illinois Student Chapter 3rd Annual Symposium. Recent Advances in Nanotechnology for Cancer Therapy. 2011

The 41th, Annual Meeting of the Controlled Release Society, 2014.

INDUSTRIAL INTERNSHIP

• Fresenius-Kabi USA, 2013 summer
 My project was to investigate the critical factors that contribute to a peptide drug aggregation problem during manufacturing process and validate appropriate detection methods. Supervisor: Dr. Beena Uchil in the Formulation Department.

AWARDS RECEIVED

• Northeast Forestry University First-class Scholarship (2003 – 2007)
• Heilongjiang Provincial Merit Student (2006)
• Northeast Forestry University Outstanding Graduate (2007)
• University of Illinois at Chicago University Fellowship (2010 – 2011)
• Graduate Student Council Travel Award, 2011
• Graduate College Student Presenter Award, 2011.
• Second place in poster session, Polymers in Medicine and Biology 2011, American Chemical Society Polymer Division, CA, USA.
• University of Illinois at Chicago University Fellowship (2013 – 2014)
• Provost's Awards for Graduate Research, 2013
• Graduate Student Council Travel Award, 2013
• Graduate College Student Presenter Award, 2013.
• W.E. Van Doren Scholar, 2013
• University Dean Scholarship 2014
• The 28th Annual Symposium of the Protein Society, San Deigo, CA, 2014, Best Poster Award

LEADERSHIP AND MEMBERSHIP

• President, Controlled Release Society (CRS) - Illinois Student Chapter, 2014 - Current
• Vice president, Controlled Release Society (CRS) - Illinois Student Chapter, May 2012 - 2014
• Phi Kappa Phi Honor Society 2013.03 - current
• Pharmaceutics Graduate Student Research Meeting 2014-UIC Organizing Committee
• Treasurer, Controlled Release Society (CRS) - Illinois Student Chapter, Aug 2010 - April 2012
• Rho Chi Honor Society, 2012.02 - current
• American Association of Pharmaceutical Scientists (AAPS), 2010 - current.
• Controlled Release Society (CRS), 2010 - current.

MENTORING EXPERIENCE
2011-2013 Elizabeth Ramirez, undergraduate student, Department of Biology, University of Illinois at Chicago
2015 Grace Moore, undergraduate student, Department of Biology, Indiana University